Controlling Microscale Tipstreaming for Sustained Formation of Nanoscale Droplet Reactors

控制微尺度尖端流以持续形成纳米级液滴反应器

基本信息

  • 批准号:
    0730727
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

Proposal Number: 0730727 Principal Investigators: Anna, Shelley Affiliation: Carnegie Mellon University Proposal Title: Controlling Tipstreaming for Sustained Formation of Nanoscale Droplet Reactors The goal of the proposed work is to incorporate a well-known fluid mechanical phenomenon into a flow-focusing microfluidic device. The phenomenon, tipstreaming, will allow submicron droplets to be formed in microfluidic devices which have much larger internal dimensions (tens and hundreds of microns). As part of this work, we will demonstrate that small reactors (droplets) are ideal for controlling and studying nanoparticle synthesis reactions. Successful completion of the project will require meeting three objectives: (1) quantifying the physicochemical mechanics underlying tipstreaming, (2) exploiting geometry and fluid additives to achieve controllable and sustained tipstreaming, and (3) synthesis of metal nanoparticles within tipstreaming-generated nanoreactors. Current research being performed in the PIs laboratories provides the experimental and analytical expertise needed to complete the proposed work. Intellectual Merit: Two important problems will be tackled in the proposed work: control of an interface-dominated fluid mechanics phenomenon, and control of nanoparticle growth. We will develop fundamental principles and analytical models to control tipstreaming in a microfluidic device. This model will provide the basis for a method to form monodisperse submicron droplets in microfluidic devices that are fabricated via cost effective techniques like soft lithography. The ability to harness and control the process for submicron droplet formation will open new avenues for microreactor development and for the design of custom emulsions. The knowledge gained will be pertinent not only to the flow-focusing geometry utilized here, but is to form submicron droplets for use as microreactors in the formation of nanoparticles; we argue that these small dimensions will provide a well-controlled environment for growing metal nanoparticles. This work will enable us to verify the impact of reactor volume homogeneity on nanoparticle quality. This project will result in a device capable of properly investigating the nature of nanoparticle growth and development. Broader Impact: The proposed work will contribute an important tool to the development of microfluidic systems, namely the ability to generate structures orders of magnitude smaller than the device. By combining robust flow control in microfluidic devices with the precision of low Reynolds number droplet dynamics, submicron droplets can be formed in devices with easily fabricated dimensions. This will add a new regime to the growing field of microfluidic and 'lab-on-a-chip' technology. The proposed research will have broad educational impact through the strong records of both PIs of involvement in educational and outreach activities on campus. The PI and co-I are committed to interdisciplinary research; between the two Investigators, we have appointments in five departments and two different colleges at CMU (Mechanical Eng., Chemical Eng., Materials Science & Eng., Chemistry and Physics). The proposed project will be truly synergistic, with significant contributions coming from both PIs? expertise and a clear necessity for close collaboration. Graduate and undergraduate students involved in the project will need to work closely with both research groups; the benefit of this interaction has already been demonstrated with two current co-advised students. The two PIs have been holding joint group meetings for the last two years to enhance the education and exposure of students to complimentary ideas and techniques; this project will grow from this existing synergy. The highly visual nature of the microfluidics component of this work will allow for easy extrapolation to outreach activities at all levels. We will also develop modules for existing outreach programs to dispel some of the common misconceptions associated with the term 'nanotechnology'. These module(s), which will be made audience-appropriate, will address the issue that even educated scientists and engineers outside of academia have little concept of the scales (length and time) involved in nanoscale processes.
提案编号:0730727主要研究者:安娜,Shelley所属机构: 卡内基梅隆大学提案标题:控制尖端流持续形成纳米级液滴反应器拟议工作的目标是将一个众所周知的流体力学现象纳入流动聚焦微流体装置。尖端流现象将允许在具有大得多的内部尺寸(数十和数百微米)的微流体装置中形成亚微米液滴。作为这项工作的一部分,我们将证明小反应器(液滴)是控制和研究纳米颗粒合成反应的理想选择。该项目的成功完成将需要满足三个目标:(1)量化尖端流背后的物理化学力学,(2)利用几何形状和流体添加剂实现可控和持续的尖端流,以及(3)在尖端流生成的纳米反应器内合成金属纳米颗粒。目前正在PI实验室进行的研究提供了完成拟议工作所需的实验和分析专业知识。智力优势:两个重要的问题将解决在拟议的工作:控制界面占主导地位的流体力学现象,和控制纳米粒子的生长。我们将发展基本原理和分析模型来控制微流控装置中的尖端流。该模型将为在微流体装置中形成单分散亚微米液滴的方法提供基础,所述微流体装置通过成本有效的技术(如软光刻)制造。利用和控制亚微米液滴形成过程的能力将为微反应器的开发和定制乳液的设计开辟新的途径。所获得的知识将是相关的,不仅在这里使用的流动聚焦的几何形状,但要形成亚微米液滴作为微反应器在纳米粒子的形成中使用,我们认为,这些小尺寸将提供一个良好的控制环境生长金属纳米粒子。这项工作将使我们能够验证反应器体积均匀性对纳米颗粒质量的影响。该项目将产生一种能够正确研究纳米颗粒生长和发育性质的设备。更广泛的影响:拟议的工作将有助于微流控系统的发展,即能够生成比设备小的数量级的结构的重要工具。通过将微流体装置中的鲁棒流动控制与低雷诺数液滴动力学的精度相结合,可以在具有容易制造的尺寸的装置中形成亚微米液滴。这将为不断发展的微流体和“芯片实验室”技术领域增加一个新的机制。拟议的研究将通过参与校园教育和外展活动的两个PI的强有力的记录产生广泛的教育影响。PI和co-I致力于跨学科研究;在两位研究员之间,我们在CMU的五个部门和两个不同学院(机械工程,化学工程,材料科学工程师,化学和物理)。拟议的项目将是真正的协同作用,与重大贡献来自两个PI?专业知识和密切合作的明确必要性。参与该项目的研究生和本科生将需要与两个研究小组密切合作;这种互动的好处已经在两名目前的共同建议的学生身上得到了证明。在过去的两年里,这两个PI一直在举行联合小组会议,以加强学生对互补思想和技术的教育和接触;这个项目将从现有的协同作用中发展起来。这项工作的微流控部分具有高度直观性,因此可以很容易地外推到各级的外联活动。我们还将为现有的推广计划开发模块,以消除与“纳米技术”相关的一些常见误解。这些模块将适合观众,将解决即使是受过教育的科学家和学术界以外的工程师对纳米级过程中涉及的尺度(长度和时间)几乎没有概念的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shelley Anna其他文献

Board 238: Collaborative Research: AGEP FC-PAM: Project ELEVATE (Equity-focused Launch to Empower and Value AGEP Faculty to Thrive in Engineering)
Board 238:合作研究:AGEP FC-PAM:ELEVATE 项目(以股权为中心的启动,以赋予 AGEP 教师权力和价值,使其在工程领域蓬勃发展)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alaine Allen;Darlene Saporu;Elisa Riedo;Shelley Anna;Linda DeAngelo;Andrew Douglas;Nathalie Felciai;Neetha Khan;Jelena Kovacevic;Stacey Marks;William Sanders;T. E. Schlesinger;Yao Wang;Jacqueline Rohde;Charlie Diaz;Nelson Zounlomè
  • 通讯作者:
    Nelson Zounlomè

Shelley Anna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shelley Anna', 18)}}的其他基金

UNS: Synthesis and Dynamics of Elastic Capsules with Controlled Interfacial Elasticity
UNS:具有受控界面弹性的弹性胶囊的合成和动力学
  • 批准号:
    1511016
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Control of Mixing Driven by Coalescence of Sessile Drops
固着液滴聚结驱动的混合控制
  • 批准号:
    1264552
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Microscale Flows to Engineer Fluid Interfaces Containing Macromolecular and Colloidal Species
用于设计包含大分子和胶体物质的流体界面的微尺度流动
  • 批准号:
    1033814
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Fluid Dynamics of Microscopic Defects in Layered Liquids
职业:层状液体中微观缺陷的流体动力学
  • 批准号:
    0547432
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NER: Microfluidic-Enabled Synthesis of Nanoparticles and Hierarchical NanoClusters
NER:微流控纳米粒子和分层纳米团簇的合成
  • 批准号:
    0608864
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SGER: Microfluidics as a Platform to Study Confinement of Complex Fluid Microstructures at Intermediate Length Scales
SGER:微流体作为研究中等长度尺度复杂流体微结构约束的平台
  • 批准号:
    0527909
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Microscale radiography of hydrodynamic instabilities mitigation in magnetized high-density laser plasmas
磁化高密度激光等离子体中流体动力学不稳定性缓解的微尺度射线照相
  • 批准号:
    24K06988
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design new-generation microscale thermoelectric device
设计新一代微型热电器件
  • 批准号:
    DE240101170
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Multi-Scale Experimental and Computational Investigation of Microscale Origins of Ductile Failure
延性破坏微观起源的多尺度实验和计算研究
  • 批准号:
    2334678
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Highly efficient microscale liquid handling and bio interfacing
高效的微量液体处理和生物界面
  • 批准号:
    FL230100023
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Australian Laureate Fellowships
Development and Promotion of Teaching Materials for Inquiry Learning in Collaboration with Programming Education for Microscale Experiments
与微型实验编程教育合作的探究性学习教材的开发与推广
  • 批准号:
    23K02764
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Microscale enabled advanced flow and heat transfer technologies featuring high performance and low power consumption; Acronym: Micro-FloTec
微尺度实现了高性能、低功耗的先进流动和传热技术;
  • 批准号:
    EP/Y004973/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Innovation of stimulus electrodes based on macro-microscale multiresolution surface control
基于宏观微观多分辨率表面控制的刺激电极创新
  • 批准号:
    23K19217
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Microscale Radionuclide S-values for αRPT
αRPT 的微量放射性核素 S 值
  • 批准号:
    10713711
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
  • 批准号:
    10587627
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Evaluation of novel microscale cell culture platform for translational drug development in prostate cancer
用于前列腺癌转化药物开发的新型微型细胞培养平台的评估
  • 批准号:
    10588604
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了