Design of Efficient Polynomial Time Approximation Schemes for Scheduling and Related Optimization Problems
调度及相关优化问题的高效多项式时间逼近方案设计
基本信息
- 批准号:183875639
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2010
- 资助国家:德国
- 起止时间:2009-12-31 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main goal of our research project is the design and analysis of approximation schemes for important scheduling and bin packing problems. There are polynomial time approximation schemes (PTAS) for many NP-hard optimization problems such that a solution near the optimum can be found for any accuracy $\epsilon > 0$ and input $I$. For small $\epsilon > 0$, most of the approximation schemes have a huge running time such that they cannot be applied in practice. An example is the approximation scheme by Hochbaum and Shmoys for scheduling on identical machines with running time $(n/\epsilon)^{O(1/\epsilon^2)}$. The goal is to develop efficient approximation schemes, which have a running time of the form $f(1/\epsilon) poly(n)$ with a value $f(1/\epsilon)$ as small as possible.For scheduling on identical/uniform machines, we want to develop an efficient polynomial time approximation scheme (EPTAS) with running time $2^{O(1/\epsilon \log^c(1\epsilon))} + poly(n)$ where $c \geq 0$ is as small as possible. This would be close to the best known lower bound for the running time of an approximation scheme for this scheduling problem. Moreover, we want to investigate online scheduling where jobs arrive over time. As a new job arrives, several already placed jobs may be repacked. Our goal is the design of an efficient robust online algorithm with a polynomial migration factor in $1/\epsilon$. The migration factor is defined by the size of the repacked items divided by the size of the arriving item. The best known algorithm for the robust online scheduling problem has a migration factor exponential in $1/\epsilon$.The approximation schemes for bin packing have an additional constant $g(1/\epsilon)$; i.e. $A_\epsilon(I) \leq (1+\epsilon) OPT(I) + g(1/\epsilon)$. The advantage is that the running time is bounded by a polynomial in $n$ and $1/\epsilon$. These schemes are called asymptotic fully polynomial time approximation schemes (AFPTAS). For bin packing, we want to improve the additive constant $g(1/\epsilon)$ as well as the running time of existing AFPTAS. Additionally, we consider the bin packing variant called cutting stock where we have only a constant number of $m$ different item sizes. Our goal is the design of an algorithm that needs at most one additional bin compared to the optimal solution and whose running time is only single exponential in $m$.Finally, we will implement the developed algorithms and analyze them using methods of algorithm engineering.
我们的研究项目的主要目标是设计和分析重要调度和装箱问题的近似方案。对于许多NP-Hard优化问题,都有多项式时间近似格式(PTA),使得对于任意精度和输入的$I,都能找到接近最优解。对于较小的$\epsilon&>0$,大多数近似格式的运行时间都很长,无法应用于实际。一个例子是Hochbaum和Shmoys在相同机器上的排序的近似方案,其运行时间为$(n/\epsilon)^{O(1/\epsilon^2)}$。目标是开发有效的近似方案,其运行时间形式为$f(1/\epsilon)Poly(N)$且值$f(1/\epsilon)$尽可能小.对于相同/均匀机器上的排序,我们想要开发一个高效的多项式时间近似方案(EPTAS),其运行时间为$2^{O(1/\epsilon\log^c(1\epsilon))}+Poly(N)$,其中$c\geq0$是尽可能小的.这将接近该调度问题的近似方案的运行时间的已知下界。此外,我们还想研究随着时间推移作业到达的在线调度。随着新工作的到来,几个已经安排好的工作可能会被重新打包。我们的目标是设计一个高效健壮的在线算法,其多项式迁移因子为$1/\epsilon$。迁移系数由重新包装的物品的大小除以到达的物品的大小来定义。稳健在线调度问题最著名的算法有一个迁移因子指数为$1/\epsilon$,装箱的近似方案有一个额外的常数$g(1/\epsilon)$,即$A_\epsilon(I)\leq(1+\epsilon)opt(I)+g(1/\epsilon)$。优点是运行时间由$n$和$1/\epsilon$中的多项式限定。这些格式被称为渐近完全多项式时间近似格式(AFPTAS)。对于装箱,我们想要改善加性常数$g(1/\epsilon)$以及现有AFPTAS的运行时间。此外,我们考虑一种称为下料的箱子包装变种,在这种情况下,我们只有固定数量的$m$不同尺寸的物品。我们的目标是设计一种算法,该算法最多只需要比最优解多一个仓,并且运行时间仅为$m$的单指数。最后,我们将使用算法工程的方法来实现所开发的算法并对其进行分析。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fully dynamic bin packing revisited
- DOI:10.1007/s10107-018-1325-x
- 发表时间:2014-11
- 期刊:
- 影响因子:2.7
- 作者:Sebastian Berndt;K. Jansen;Kim-Manuel Klein
- 通讯作者:Sebastian Berndt;K. Jansen;Kim-Manuel Klein
A PTAS for Scheduling Unrelated Machines of Few Different Types
- DOI:10.1007/978-3-662-49192-8_24
- 发表时间:2016-01
- 期刊:
- 影响因子:3.9
- 作者:Jan Clemens Gehrke;K. Jansen;S. Kraft;Jakob Schikowski
- 通讯作者:Jan Clemens Gehrke;K. Jansen;S. Kraft;Jakob Schikowski
Closing the Gap for Makespan Scheduling via Sparsification Techniques
- DOI:10.4230/lipics.icalp.2016.72
- 发表时间:2016-04
- 期刊:
- 影响因子:0
- 作者:K. Jansen;Kim-Manuel Klein;José Verschae
- 通讯作者:K. Jansen;Kim-Manuel Klein;José Verschae
About the Structure of the Integer Cone and its Application to Bin Packing
整数锥体的结构及其在装箱中的应用
- DOI:10.1137/1.9781611974782.103
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:K. Jansen;K. Klein
- 通讯作者:K. Klein
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Klaus Jansen其他文献
Professor Dr. Klaus Jansen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Klaus Jansen', 18)}}的其他基金
Structural results and their application in scheduling and packing problems
结构结果及其在调度和打包问题中的应用
- 批准号:
335406402 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Robust Online Algorithms for Scheduling and Packing Problems
用于调度和打包问题的强大在线算法
- 批准号:
320260044 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Lower bounds for scheduling and packing algorithms assuming the exponential time hypothesis
假设指数时间假设的调度和打包算法的下限
- 批准号:
236400547 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Design of approximation algorithms for scheduling on unrelated machines
不相关机器调度的近似算法设计
- 批准号:
197234132 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Approximative Algorithmen für zwei- und dreidimensionale Packungsprobleme und verwandte Schedulingprobleme
二维和三维包装问题及相关调度问题的近似算法
- 批准号:
68463026 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
Approximation algorithms for mixed and generalized packing and covering problems
混合和广义打包和覆盖问题的近似算法
- 批准号:
5410280 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Grants
Fine-grained complexity and algorithms for scheduling and packing
用于调度和打包的细粒度复杂性和算法
- 批准号:
453769249 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Structural results for integer linear programs
整数线性规划的结构结果
- 批准号:
528381760 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
- 批准号:
2338559 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
- 批准号:
2338683 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
- 批准号:
2328281 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Computational Design of Single-Atom Sites in Alloy Hosts as Stable and Efficient Catalysts
职业:合金主体中单原子位点的计算设计作为稳定和高效的催化剂
- 批准号:
2340356 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Recyclable, smart and highly efficient wire-shaped solar cells waved portable/wearable electronics
可回收、智能、高效的线形太阳能电池挥舞着便携式/可穿戴电子产品
- 批准号:
24K15389 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)