Structural results and their application in scheduling and packing problems

结构结果及其在调度和打包问题中的应用

基本信息

  • 批准号:
    335406402
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2017
  • 资助国家:
    德国
  • 起止时间:
    2016-12-31 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The main focus of this project is to find structural results for integer linear programs (ILPs). Our goal is to prove the existence of optimal solutions of the respective ILP with a very specific shape. For example, we want to show there are always optimal solutions which have a bounded number of non-zero components or limited weight on certain components. Using the existence of solutions with this shape, one can search specifically for them and therefore solve the ILP more efficiently.In this project, we focus on ILP formulations that arise from concrete algorithmic problems like bin packing. In this proposal we investigate structural properties which are can be used to solve open algorithmic questions. For example, we hope to find an FPT algorithm for the bin packing problem parameterized by the number d of different item sizes with running time 2^2^O(d) |I|^O(1), where |I| is the encoding length of instance I. This would improve upon the result by Goemans and Rothvoß who proved polynomiality for bin packing when the number d of different item sizes is constant. Their algorithm has a running time of |I|^2^O(d). Furthermore, we want to prove structure results for the case when only approximate solutions are needed. With this an algorithm for the bin packing problem can be found which has a running time of 2^d |I|^O(1) and approximation guarantee OPT+1, where OPT is the value of an optimal solution. For the scheduling problem on identical machines, this could imply an algorithm with running time 2^d |I|^O(1) and approximation guarantee (1+epsilon) OPT. One of our greater aims of this project is to prove or disprove the so called modified roundup property (MRP) of the Gilmore-Gomory ILP for the bin packing problem via investigations on the structure. The MRP is a prominent conjecture and states that the objective value of the ILP is at most the objective value of the linear program relaxation rounded up plus 1.In general, structural results can be applied to a wide range of applications and algorithmic problems. We believe that these techniques can become an important part of the algorithmic toolset to develop efficient algorithms.
这个项目的主要重点是寻找整数线性规划(ILP)的结构结果。我们的目标是证明一个非常具体的形状的相应的ILP的最优解的存在性。例如,我们想证明总是存在最优解,这些最优解具有有限数量的非零分量或某些分量的有限权重。利用这种形状的解决方案的存在性,人们可以专门搜索它们,从而更有效地解决ILP。在这个项目中,我们专注于ILP公式,从具体的算法问题,如装箱。在这个建议中,我们调查的结构特性,可用于解决开放的算法问题。例如,我们希望找到一个FPT算法,用于由不同物品大小的数量d参数化的装箱问题,运行时间为2^2^O(d)。|我|^O(1),其中|我|是实例I的编码长度。这将改善Goemans和Rothvovich的结果,他们证明了当不同项目大小的数量d是常数时装箱的多项式。他们的算法的运行时间为|我|^2^O(d).此外,我们要证明结构的情况下,只需要近似解。由此可以找到一个求解装箱问题的算法,其运行时间为2^d|我|^O(1)和近似保证OPT+1,其中OPT是最优解的值。对于相同机器上的调度问题,这可能意味着运行时间为2^d的算法|我|^O(1)和近似保证(1+ ∞)OPT.我们的一个更大的目标是通过对Gilmore-Gomory ILP的结构的研究来证明或反驳Gilmore-Gomory ILP对于装箱问题的所谓修正的舍入性质(MRP). MRP是一个著名的猜想,它指出ILP的目标值至多是线性规划松弛的目标值四舍五入加1。一般来说,结构性结果可以应用于广泛的应用和算法问题。我们相信,这些技术可以成为算法工具集的重要组成部分,以开发高效的算法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Klaus Jansen其他文献

Professor Dr. Klaus Jansen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Klaus Jansen', 18)}}的其他基金

Robust Online Algorithms for Scheduling and Packing Problems
用于调度和打包问题的强大在线算法
  • 批准号:
    320260044
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Lower bounds for scheduling and packing algorithms assuming the exponential time hypothesis
假设指数时间假设的调度和打包算法的下限
  • 批准号:
    236400547
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Design of approximation algorithms for scheduling on unrelated machines
不相关机器调度的近似算法设计
  • 批准号:
    197234132
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Design of Efficient Polynomial Time Approximation Schemes for Scheduling and Related Optimization Problems
调度及相关优化问题的高效多项式时间逼近方案设计
  • 批准号:
    183875639
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Approximative Algorithmen für zwei- und dreidimensionale Packungsprobleme und verwandte Schedulingprobleme
二维和三维包装问题及相关调度问题的近似算法
  • 批准号:
    68463026
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Approximation algorithms for mixed and generalized packing and covering problems
混合和广义打包和覆盖问题的近似算法
  • 批准号:
    5410280
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Fine-grained complexity and algorithms for scheduling and packing
用于调度和打包的细粒度复杂性和算法
  • 批准号:
    453769249
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Structural results for integer linear programs
整数线性规划的结构结果
  • 批准号:
    528381760
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Explaining automated test agents and their test results
解释自动化测试代理及其测试结果
  • 批准号:
    23K11062
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of the actual conditions of related operations and their composition for the systematization of renovation planning method utilizing the results of park management
分析相关作业的实际情况及其构成,利用公园管理成果实现改造规划方法的系统化
  • 批准号:
    22K05712
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
International Comparative Study on Higher Education Reforms and Their Results
高等教育改革及其成果的国际比较研究
  • 批准号:
    20H01699
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Monitoring Activities of Teenagers to Comprehend their Habits (MATCH) study - Results video
青少年理解其习惯的监测活动 (MATCH) 研究 - 结果视频
  • 批准号:
    414000
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Salary Programs
Invariant Objects and Their Connections in Dynamical Systems: Rigorous Results, Computations, and Applications
动态系统中的不变对象及其连接:严格的结果、计算和应用
  • 批准号:
    1800241
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
How do adult cancer patients and their healthcare providers perceive, respond to, and manage uncertainty related to incidental results from genome sequencing?
成年癌症患者及其医疗保健提供者如何感知、应对和管理与基因组测序偶然结果相关的不确定性?
  • 批准号:
    404165
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Studentship Programs
Configurations of individual and collective religious identities and their potential for civil society. Representative results for Germany and Switzerland in comparison
个人和集体宗教身份的配置及其对公民社会的潜力。
  • 批准号:
    384887304
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Late Cenozoic sea level changes, their timing and amplitude in offshore New Zealand: Results from IODP Expedition 317
新西兰近海新生代晚期海平面变化、时间和幅度:IODP 317 号探险的结果
  • 批准号:
    23340154
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Supporting the Alberta Métis Settlements in advancing their Chronic Disease Prevention Model: Sharing results from administered ACE questionnaire in the Settlements
支持阿尔伯塔梅蒂斯定居点推进其慢性病预防模式:共享定居点内执行的 ACE 问卷调查结果
  • 批准号:
    246065
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Miscellaneous Programs
Factors Related to Parents' Resilience When Their Child is Suffering From Cancer: Preliminary Results for Developing Parental Support Programs
当孩子患有癌症时,与父母的复原力相关的因素:制定父母支持计划的初步结果
  • 批准号:
    22792226
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了