Collaborative Research: Closing the Loop on Lava Flow Models: Linking Thermal and Mechanical Controls on Flow Emplacement Dynamics Using Novel Field and Experimental Techniques

合作研究:熔岩流模型的闭环:利用新的领域和实验技术将热和机械控制联系起来对流动安置动力学

基本信息

  • 批准号:
    0739153
  • 负责人:
  • 金额:
    $ 11.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-15 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

The considerable hazard to property and infrastructure posed by effusive lava flows in volcanically active areas motivates this project to understand the physics of lava flow emplacement and improve our ability to predict their behavior. A fundamental control on the dynamics of lava flows arises from their rheology, which changes from fluid-like on eruption to solid-like during emplacement. This complex behavior has been investigated by accounting for either the mechanical or thermal evolution of a flow, but rarely have these approaches been coupled. This proposed work aims to link these two parallel approaches by developing new methods for quantifying lava flow morphology, which records the coupled thermal and mechanical evolution of the lava. It is proposed to use airborne- and ground-based laser mapping techniques to construct high-resolution (from 1 cm to ~1m) topographic maps with which we can resolve such features as individual clasts on lava surfaces to lava channels/levees and flow margins. Morphology observations will be coupled with laboratory measurements of the physical properties of the lava and physical experiments using analog materials that simulate lava flow behavior. The integrated experimental and observational will be used to test and refine predictive models of flow emplacement. Fieldwork will be conducted at two locations: Mauna Loa Volcano and the Oregon Cascades. These sites provide a range of initial lava compositions and eruption styles, making the results widely applicable to volcanically active areas globally.During emplacement, lava flows develop viscous and visco-elastic rheologies that, coupled with a solidifying crust, produce complex responses to deformation. For this reason, models of flow emplacement must consider both the mechanical and the thermal history of a flow. Mechanical models include gravitational spreading of viscous and Bingham yield strength fluids. Thermal models of have focused on basaltic lava channels, specifically on the reduction of flow cooling rates with increasing coverage of a solid surface, while the role of solidification on flow dynamics has been examined by determining tensional failure criteria of that solid crust. Until recently, models that link thermal and dynamical regimes have been limited to low Reynolds number (low flux) flow in radial spreading regimes. Over the past few years the team has extended laboratory experiments to examine solidifying flows at higher fluxes traveling through uniform and irregular channels. At the same time, we have obtained detailed data on distributions of flow surface morphologies, transport conditions, and material properties of basaltic lava produced by several recent eruptions. The proposed work will utilize airborne and ground-based LiDAR to make quantitative and comprehensive measurements of flow features and surface morphologies. It is expected that these data will lead to the development of surface analysis techniques that may have broad application within the Earth Sciences. They will use data to examine down-flow evolution of flow features such as: flow thickening and spreading, channel development, and solid crust thickening. Sampling of the same flows will allow the evaluation of thermal and rheological evolution as it relates to morphological changes. It is further proposed to evaluate current theoretical models (both mechanical and thermal) and identify their strengths and weaknesses. Based on these results, the team will conduct laboratory experiments to help address gaps in our understanding. Ultimately, this work will help unify the disparate approaches that have been taken to understand the physical processes of lava flow emplacement, improving our ability to both predict the behavior of active lava flows and learn about past volcanic activity that is recorded in solidified lava flows.
在火山活跃地区,喷出的熔岩流对财产和基础设施造成了相当大的危害,这促使本项目了解熔岩流就位的物理学,并提高我们预测其行为的能力。对熔岩流动力学的基本控制来自于它们的流变学,其从喷发时的流体状变为侵位期间的固体状。这种复杂的行为已被调查占的机械或热演化的流动,但很少有这些方法被耦合。这项工作的目的是通过开发新的方法来量化熔岩流形态,记录耦合的热和机械演化的熔岩这两个并行的方法。建议使用机载和地面激光测绘技术来构建高分辨率(从1厘米到1米)的地形图,我们可以解决这样的功能,如熔岩表面的熔岩通道/堤坝和流动边缘的个别碎屑。形态观测将与实验室测量的熔岩和物理实验的物理性质相结合,使用模拟材料,模拟熔岩流的行为。综合实验和观测将被用来测试和完善流动定位的预测模型。实地考察将在两个地点进行:莫纳罗亚火山和俄勒冈州瀑布。这些地点提供了一系列的初始熔岩成分和喷发风格,使其结果广泛适用于全球火山活跃地区。在侵位过程中,熔岩流发展粘性和粘弹性流变学,再加上凝固的地壳,产生复杂的变形响应。由于这个原因,流动就位的模型必须考虑流动的机械和热历史。力学模型包括粘性和宾汉屈服强度流体的重力扩散。的热模型集中在玄武岩熔岩通道,特别是减少流动冷却速率与固体表面的覆盖率增加,而凝固对流动动力学的作用已被检查确定的拉伸破坏标准的固体地壳。直到最近,模型,链接热和动力学制度已被限制到低雷诺数(低通量)流在径向扩散制度。在过去的几年里,该团队扩展了实验室实验,以研究通过均匀和不规则通道的较高通量下的凝固流。与此同时,我们已经获得了详细的数据分布的流动表面形态,运输条件,和最近几次喷发所产生的玄武质熔岩的材料性质。拟议的工作将利用机载和地面激光雷达对流动特征和表面形态进行定量和全面的测量。预计这些数据将导致开发可能在地球科学中具有广泛应用的表面分析技术。他们将使用数据来研究流动特征的向下流动演变,例如:流动增厚和扩散,通道发育和固体地壳增厚。相同的流动取样将允许热和流变学演变的评价,因为它涉及到形态学的变化。它进一步建议,以评估目前的理论模型(机械和热),并确定其优点和缺点。基于这些结果,该团队将进行实验室实验,以帮助解决我们理解中的差距。最终,这项工作将有助于统一已经采取的不同方法来理解熔岩流就位的物理过程,提高我们预测活跃熔岩流行为的能力,并了解凝固熔岩流中记录的过去火山活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samuel Soule其他文献

Samuel Soule的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samuel Soule', 18)}}的其他基金

EAGER: Science Verification Activities for the 6500m HOV Alvin
EAGER:6500m HOV Alvin 的科学验证活动
  • 批准号:
    2129431
  • 财政年份:
    2021
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Expanding Deep-sea Horizons: Scientific Priorities in Abyssal Research
扩大深海视野:深海研究的科学优先事项
  • 批准号:
    2009117
  • 财政年份:
    2020
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
RAPID: Documenting the development of a lava delta at the 2018 Lower East Rift Zone eruption of Kilauea Volcano
RAPID:记录 2018 年东裂谷下部地区基拉韦厄火山喷发时熔岩三角洲的发展
  • 批准号:
    1846068
  • 财政年份:
    2018
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Collaborative Research: Rise and Fall of Galapagos Seamounts
合作研究:加拉帕戈斯海山的兴衰
  • 批准号:
    1634685
  • 财政年份:
    2016
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Alvins New Users Workshop
阿尔文斯新用户研讨会
  • 批准号:
    1550501
  • 财政年份:
    2015
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
EarthCube IA: Collaborative Proposal: Interdisciplinary Earth Data Alliance as a Model for Integrating Earthcube Technology Resources and Engaging the Broad Community
EarthCube IA:协作提案:跨学科地球数据联盟作为整合 Earthcube 技术资源和广泛社区参与的模型
  • 批准号:
    1540909
  • 财政年份:
    2015
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Collaborative Research: Establishing Community Standards for Underwater Video Acquisition, Tagging, Archiving and Access.
合作研究:建立水下视频采集、标记、存档和访问的社区标准。
  • 批准号:
    1548116
  • 财政年份:
    2015
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidating Conduit, Eruption, and Pyroclast Transport Dynamics of Large Silicic Submarine Eruptions
合作研究:阐明大型硅质海底喷发的管道、喷发和火山碎屑输送动力学
  • 批准号:
    1357216
  • 财政年份:
    2014
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Continuing Grant
Collaborative Research: Degassing-Based Constraints on the Dynamics of Submarine Eruptions
合作研究:基于脱气的海底喷发动力学约束
  • 批准号:
    1333492
  • 财政年份:
    2013
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Melt Inclusions to Test Models for Wet Melting and Melt Extraction Beneath Mid-Ocean Ridges
合作研究:利用熔体包裹体测试大洋中脊下湿法熔融和熔体提取模型
  • 批准号:
    0926422
  • 财政年份:
    2009
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: HCC: Medium: "Unboxing" Haptic Texture Perception: Closing the Loop from Skin Contact Mechanics to Novel Haptic Device
合作研究:HCC:媒介:“拆箱”触觉纹理感知:闭合从皮肤接触力学到新型触觉设备的循环
  • 批准号:
    2312153
  • 财政年份:
    2023
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Medium: "Unboxing" Haptic Texture Perception: Closing the Loop from Skin Contact Mechanics to Novel Haptic Device
合作研究:HCC:媒介:“拆箱”触觉纹理感知:闭合从皮肤接触力学到新型触觉设备的循环
  • 批准号:
    2312154
  • 财政年份:
    2023
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Medium: "Unboxing" Haptic Texture Perception: Closing the Loop from Skin Contact Mechanics to Novel Haptic Device
合作研究:HCC:媒介:“拆箱”触觉纹理感知:闭合从皮肤接触力学到新型触觉设备的循环
  • 批准号:
    2312155
  • 财政年份:
    2023
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Monitoring Nearshore Ice and Closing the Arctic Tide-gauge Gap with GNSS-Reflectometry (MONICA)
EAGER:合作研究:利用 GNSS 反射测量监测近岸冰层并缩小北极潮位间隙 (MONICA)
  • 批准号:
    2321313
  • 财政年份:
    2023
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Continuing Grant
EAGER: Collaborative Research: Monitoring Nearshore Ice and Closing the Arctic Tide-gauge Gap with GNSS-Reflectometry (MONICA)
EAGER:合作研究:利用 GNSS 反射测量监测近岸冰层并缩小北极潮位间隙 (MONICA)
  • 批准号:
    2321314
  • 财政年份:
    2023
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Continuing Grant
Collaborative Research: SWIFT: Closing the Loop for Accountable Interference-free Spectrum Sharing with Passive Radio Receivers
合作研究:SWIFT:与无源无线电接收器实现负责任的无干扰频谱共享的闭环
  • 批准号:
    2229427
  • 财政年份:
    2022
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: Closing the Loop for Accountable Interference-free Spectrum Sharing with Passive Radio Receivers
合作研究:SWIFT:与无源无线电接收器实现负责任的无干扰频谱共享的闭环
  • 批准号:
    2229428
  • 财政年份:
    2022
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Closing the Teleoperation Gap: Integrating Scene and Network Understanding for Dexterous Control of Remote Robots
协作研究:CPS:中:缩小远程操作差距:集成场景和网络理解以实现远程机器人的灵巧控制
  • 批准号:
    2039070
  • 财政年份:
    2021
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Closing the Theory-Practice Gap in Understanding and Combating Epidemic Spreading on Resource-Constrained Large-Scale Networks
合作研究:CNS核心:小型:缩小理解和抗击资源有限的大规模网络上的流行病传播的理论与实践差距
  • 批准号:
    2209922
  • 财政年份:
    2021
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Closing the Teleoperation Gap: Integrating Scene and Network Understanding for Dexterous Control of Remote Robots
协作研究:CPS:中:缩小远程操作差距:集成场景和网络理解以实现远程机器人的灵巧控制
  • 批准号:
    2038897
  • 财政年份:
    2021
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了