CAREER: Optical and Photoemission Spectroscopy of Bulk and Interfaces of Correlated Materials

职业:相关材料的体相和界面的光学和光电发射光谱

基本信息

  • 批准号:
    0746395
  • 负责人:
  • 金额:
    $ 42.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-15 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY:This CAREER award supports theoretical and computational research and education seeking to predict the properties of new materials where strong electronic correlations play an important role. There is a firm understanding of simple materials such as noble metals and semiconductors and many of their properties can be predicted by electronic structure methods based on Density Functional Theory. In materials with partially occupied d and f shells, strong Coulomb repulsion tends to localize electrons leading to unusual phenomena such as high temperature superconductivity, colossal magnetoresistance, anomalous optical and dc conductivities and large thermoelectric coefficients. These phenomena result from collective correlated behavior of electrons and are not captured by present day electronic structure methods. The sensitivity of strongly correlated materials to small changes in control parameters resulting in large responses makes their study challenging, and the prospects for their application particularly exciting.The PI will focus on connecting experiments on correlated electron materials with theoretical modeling using many-body computational methods combined with Density Functional Theory. Encouraged by recent advances in many-body methods, such as Dynamical Mean Field Theory and its cluster extensions, the PI aims to develop ab initio computational methods to compute various spectroscopies including optical spectroscopy, transport properties and photoemission spectroscopy of strongly correlated materials. The PI will develop new algorithms and computational tools to study the competition between the Kondo effect and magnetism, and the interplay between magnetism and superconductivity at finite temperature. These methods will be enhanced to study correlation effects at interfaces of strongly correlated materials, for example an interface of a Mott insulator and a ferroelectric.This project will promote teaching, training and learning via intensive integration of undergraduate and graduate students into the research effort. The PI will develop a graduate and undergraduate course on computational physics as well as yearly two-week summer research programs for high school students. Materials from course development will be made available to the broader community through the internet and a book ?Computational Methods and Simulations in Condensed Matter Physics? being written by the PI. The summer research program will bring high-school students into today's world of materials science and engineering with special emphasis on targeting students who are members of traditionally underrepresented groups in science. This outreach effort aims to nurture an appreciation of modern computational materials science in high-school and undergraduate classrooms with a view towards creating a more scientifically literate general public.NON-TECHNICAL SUMMARY:This CAREER award supports theoretical and computational research and education that will develop new theoretical and computational tools to predict properties of complex materials and new artificially structured materials. The research focuses on a class of materials in which electrons interact strongly with each other giving rise to correlations in their motions and unusual properties that lie outside the standard textbook paradigms. The PI?s approach builds on the successes of current powerful theories, like density functional theory, and adds advances from the quantum mechanical theory of systems containing many particles. The hybrid approach is more powerful than either approach alone and will be used to study complex materials, many displaying a fierce competition at the level of electrons to become magnets, unusual insulators, superconductors, and more. The research contributes to the discovery of new materials with unusual properties that illuminate the fundamental nature of materials and matter and that may form the foundations of future technologies. The research may be important step toward being able to design new materials with desired properties using computers and starting only from knowledge of the identity of the constituent atoms. Computational approaches will be implemented to allow materials exploration by non-experts and will be made freely available to the Internet community. This project will promote teaching, training and learning via intensive integration of undergraduate and graduate students into the research effort. The PI will develop a graduate and undergraduate course on computational physics as well as yearly two-week summer research programs for high school students. Materials from course development will be made available to the broader community through the internet and a book ?Computational Methods and Simulations in Condensed Matter Physics? being written by the PI. The summer research program will bring high-school students into today's world of materials science and engineering with special emphasis on targeting students who are members of traditionally underrepresented groups in science. This outreach effort aims to nurture an appreciation of modern computational materials science in high-school and undergraduate classrooms with a view towards creating a more scientifically literate general public.
该职业奖支持理论和计算研究和教育,旨在预测强电子相关性发挥重要作用的新材料的性质。人们对贵金属和半导体等简单材料有着深刻的理解,它们的许多性质可以通过基于密度泛函理论的电子结构方法来预测。在部分占据d和f壳层的材料中,强烈的库仑排斥倾向于使电子局部化,从而导致不寻常的现象,如高温超导性,巨磁阻,反常的光学和直流电导率以及大的热电系数。这些现象是由电子的集体相关行为引起的,并且不能被当今的电子结构方法所捕获。强关联材料对控制参数的微小变化的敏感性会导致大的响应,这使得它们的研究具有挑战性,其应用前景特别令人兴奋。PI将专注于将相关电子材料的实验与使用多体计算方法结合密度泛函理论的理论建模相结合。受多体方法(如动态平均场理论及其簇扩展)的最新进展的鼓舞,PI旨在开发从头计算方法来计算各种光谱学,包括强相关材料的光谱学,输运性质和光电发射光谱学。PI将开发新的算法和计算工具来研究近藤效应和磁性之间的竞争,以及有限温度下磁性和超导性之间的相互作用。这些方法将得到加强,以研究强相关材料界面的相关效应,例如Mott绝缘体和铁电体的界面。本项目将通过将本科生和研究生紧密结合到研究工作中来促进教学、培训和学习。PI将开发一个计算物理的研究生和本科生课程,以及每年为期两周的高中生暑期研究计划。课程开发的材料将通过互联网和一本书提供给更广泛的社区。凝聚态物理学中的计算方法与模拟是私家侦探写的暑期研究计划将把高中学生带入当今的材料科学和工程世界,特别强调针对那些传统上代表性不足的科学群体的学生。这项推广工作旨在培养高中和本科生对现代计算材料科学的欣赏,以期创造一个更有科学素养的公众。非技术概述:该职业奖支持理论和计算研究和教育,将开发新的理论和计算工具来预测复杂材料和新的人工结构材料的性能。这项研究的重点是一类材料,其中电子相互作用强烈,导致它们的运动和不寻常的特性之间的相关性,这些特性超出了标准教科书的范式。私家侦探?他的方法建立在当前强大理论的成功基础上,如密度泛函理论,并增加了包含许多粒子的系统的量子力学理论的进步。混合方法比单独使用任何一种方法都更强大,将用于研究复杂材料,许多材料在电子水平上表现出激烈的竞争,成为磁体,不寻常的绝缘体,超导体等。这项研究有助于发现具有不寻常特性的新材料,这些材料阐明了材料和物质的基本性质,并可能成为未来技术的基础。这项研究可能是朝着能够使用计算机设计具有所需特性的新材料迈出的重要一步,并且只从组成原子的身份开始。将采用计算方法,使非专家能够对材料进行探索,并将免费提供给因特网社区。该项目将通过将本科生和研究生紧密结合到研究工作中来促进教学、培训和学习。PI将开发一个计算物理的研究生和本科生课程,以及每年为期两周的高中生暑期研究计划。课程开发的材料将通过互联网和一本书提供给更广泛的社区。凝聚态物理学中的计算方法与模拟是私家侦探写的暑期研究计划将把高中学生带入当今的材料科学和工程世界,特别强调针对那些传统上代表性不足的科学群体的学生。这项推广工作旨在培养高中和本科课堂对现代计算材料科学的欣赏,以期创造一个更具科学素养的公众。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kristjan Haule其他文献

Reply to: Extracting Kondo temperature of strongly-correlated systems from the inverse local magnetic susceptibility
回复:从逆局域磁化率中提取强关联系统的近藤温度
  • DOI:
    10.1038/s41467-021-21643-0
  • 发表时间:
    2021-03-04
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Xiaoyu Deng;Katharina M. Stadler;Kristjan Haule;Seung-Sup B. Lee;Andreas Weichselbaum;Jan von Delft;Gabriel Kotliar
  • 通讯作者:
    Gabriel Kotliar

Kristjan Haule的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kristjan Haule', 18)}}的其他基金

Theoretical Spectroscopy and Thermodynamics of Correlated Electron Materials
相关电子材料的理论光谱学和热力学
  • 批准号:
    2233892
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Elements: Building an open source DFT+eDMFT database for quantum materials
合作研究:Elements:为量子材料构建开源 DFT eDMFT 数据库
  • 批准号:
    2311557
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Theoretical Spectroscopy and Thermodynamics of Correlated Electron Materials
相关电子材料的理论光谱学和热力学
  • 批准号:
    1709229
  • 财政年份:
    2018
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
Theoretical Spectroscopy and Thermodynamics for Correlated Electron Materials
相关电子材料的理论光谱学和热力学
  • 批准号:
    1405303
  • 财政年份:
    2014
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Electronic Properties of Strongly Correlated Systems using Petascale Computing
合作研究:使用千万亿级计算的强相关系统的电子特性
  • 批准号:
    0941085
  • 财政年份:
    2009
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Materials World Network: Rational Material Design usingcorrelated Electron Materials, Enviromentally Friendly Energyand Color.
材料世界网络:使用相关电子材料、环保能源和颜色的合理材料设计。
  • 批准号:
    0806937
  • 财政年份:
    2008
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant

相似海外基金

INTEPS - INtegrated optical ThErmal Phosphorescence System
INTEPS - 集成光学热磷光系统
  • 批准号:
    10089333
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Collaborative R&D
Electric and optical manipulation of 2D excitons for room temperature polariton blockade and valley qubits
用于室温极化子封锁和谷量子位的二维激子的电和光操纵
  • 批准号:
    EP/Y021789/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Research Grant
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
  • 批准号:
    2327025
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
Underwater Robot Navigation and Localization During Recovery by Optical Homing and Penning
水下机器人在回收过程中通过光学寻的和潘宁进行导航和定位
  • 批准号:
    2330416
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
CAREER: Ultralow phase noise signal generation using Kerr-microresonator optical frequency combs
职业:使用克尔微谐振器光学频率梳生成超低相位噪声信号
  • 批准号:
    2340973
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
CAREER: Operating an Optical Atomic Clock Beyond the Laser Coherence and below the Projection Limit
职业:操作超出激光相干性且低于投影极限的光学原子钟
  • 批准号:
    2339487
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
REU Site: Research Experience in Optical-Infrared Astronomy at NOIRLab in Chile
REU 站点:智利 NOIRLab 光学红外天文学研究经验
  • 批准号:
    2349023
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Interferometric and Multiband optical Parametric Amplifiers for Communications (IMPAC)
用于通信的干涉式和多频带光学参量放大器 (IMPAC)
  • 批准号:
    EP/X031918/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Fellowship
MEMS-metasurface Based Tunable Optical Vortex Lasers for smart free-space communication
用于智能自由空间通信的基于 MEMS 超表面的可调谐光学涡旋激光器
  • 批准号:
    EP/X034542/2
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了