CAREER: Nanomechanics from First principles: A Symmetry-Adapted Methodology

职业:从第一原理开始的纳米力学:对称性适应方法

基本信息

  • 批准号:
    0747684
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-02-01 至 2014-01-31
  • 项目状态:
    已结题

项目摘要

This Faculty Early Development Program (CAREER) grant provides funding for developing a novel multiscale methodology that will derive practical continuum models for nano-objects directly from their first-principles atomistic description. The nanomechanical atomistic computations needed for building such models are prohibitive under the current periodic boundary condition but possible under the proposed helical boundary conditions. Thus, a symmetry-adapted atomistic modeling tool will be created by augmenting an existing first-principles density functional theory solver with helical boundary conditions. In conjunction with a symmetry adapted Cauchy Born rule, this tool will allow for importing the accurate atomic-level physics into the large-scale continuum models. Using nanotubes and nanobelts as test beds, nanomechanical models will be established for isotropic one atom thick carbon nanotubes, and anisotropic/piezoelectric few atoms thick SiGe/Si and ZnO nanobelts. During this research, first-principles calculations will be performed in order to obtain an unprecedented understanding of the response of graphene, SiGe/Si, and ZnO ultra thin layers to stretching, rolling, and torsion. Traditional finite and discrete element modeling will be carried out to validate and test the utility of the created models. If successful, this research will lead to a versatile multiscale methodology that can be applied for other important nano-objects as well as for biological systems. The models created for nanotubes and nanobelts are viable for immediate exploitation in the context of the ongoing design and process modeling efforts directed toward increasing performance and yield. The proposed research facilitates the incorporation of nanomechanics into the engineering curriculum, and outreach and mentoring activities: The growing interest in nanomechanics and the lack of a suitable textbook are strong indications that the Computational Nanomechanics book will be popular. The technology-based educational tool. Engage and Communicate, uses widely available technology (PC/Mac and Internet). This will make it easier to engage students and faculty, including high school students and members of underrepresented groups from various universities, in science and engineering activities.
这项学院早期发展计划(Career)拨款将为开发一种新的多尺度方法提供资金,该方法将直接从纳米对象的第一原理原子描述中推导出实用的连续统模型。在目前的周期性边界条件下,建立这样的模型所需的纳米机械原子计算是不可能的,但在所提出的螺旋边界条件下是可能的。因此,通过用螺旋边界条件扩充现有的第一原理密度泛函理论求解器,将创建一个对称性适应的原子建模工具。与对称性适应的柯西·伯恩规则相结合,该工具将允许将精确的原子级物理引入大规模连续介质模型。以纳米管和纳米带为试验台,建立各向同性单原子厚度碳纳米管、各向异性/压电少原子厚度SiGe/Si和ZnO纳米带的纳米力学模型。在这项研究中,将进行第一性原理计算,以获得对石墨烯、SiGe/Si和ZnO超薄薄膜对拉伸、轧制和扭转的响应的前所未有的了解。将进行传统的有限元和离散元建模,以验证和测试所创建模型的实用性。如果成功,这项研究将带来一种通用的多尺度方法,可以应用于其他重要的纳米对象以及生物系统。为纳米管和纳米带创建的模型可以在旨在提高性能和产量的持续设计和工艺建模工作的背景下立即进行开发。拟议的研究有助于将纳米力学纳入工程课程,以及推广和指导活动:对纳米力学的兴趣日益增长,以及缺乏合适的教科书,这是计算纳米力学书籍将受到欢迎的强烈迹象。基于技术的教育工具。参与和交流,使用广泛可用的技术(PC/Mac和互联网)。这将使学生和教职员工更容易参与科学和工程活动,包括高中生和来自不同大学的代表不足的群体的成员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Traian Dumitrica其他文献

Thermal Transport across Surfactant Layers on Gold Nanorods in Aqueous Solution
水溶液中金纳米棒上表面活性剂层的热传输
  • DOI:
    10.1021/acsami.5b12163
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Xuewang Wu;Yuxiang Ni;Jie Zhu;Nathan D. Burrows;Catherine J. Murphy;Traian Dumitrica;Xiaojia Wang
  • 通讯作者:
    Xiaojia Wang

Traian Dumitrica的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Traian Dumitrica', 18)}}的其他基金

EAGER: Strain Engineering the Mechanical Properties of Black Phosphorus
EAGER:对黑磷的机械性能进行应变工程
  • 批准号:
    1552741
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Multiscale Design of Hard and High Temperature Resistant Coatings by Computation and Experiment
DMREF/合作研究:通过计算和实验进行硬质耐高温涂层的多尺度设计
  • 批准号:
    1333158
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Fundamental Nanomechanics with SCC-DFTB Objective Molecular Dynamics
基础纳米力学与 SCC-DFTB 目标分子动力学
  • 批准号:
    1332228
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Hierarchically Structured Polycrystalline Hollow Gold Nanoparticles- A Model System for Integrated Experimental and Multiscale Computational Nanomechanics
合作研究:分层结构多晶空心金纳米粒子——集成实验和多尺度计算纳米力学的模型系统
  • 批准号:
    1000415
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Nanomechanics of Bacterial Mucoadhesion and Growth on Healthy and Diseased Human Gut Mucus
职业:健康和患病人类肠道粘液上细菌粘膜粘附和生长的纳米力学
  • 批准号:
    2338518
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Probing the nanomechanics of single grain boundary with decorated solutes
用修饰溶质探测单晶界的纳米力学
  • 批准号:
    DE200101105
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Early Career Researcher Award
Nanomechanics of Tubulin Extraction from Microtubules and Adhesin Catch-Bond Rupture
从微管中提取微管蛋白的纳米力学和粘附素捕获键断裂
  • 批准号:
    2139572
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Isolating Field Effects in Sintering via Ultrahigh Temperature In Situ Nanomechanics
通过超高温原位纳米力学隔离烧结中的场效应
  • 批准号:
    2207292
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
PeakForce TUNA and NanoMechanics Lab AFM Upgrade
PeakForce TUNA 和纳米力学实验室 AFM 升级
  • 批准号:
    RTI-2022-00346
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Tools and Instruments
REU Site: Renewal of Summer Internships in Nanomaterials, Nanomechanics, and Leadership Training in Engineering
REU 网站:纳米材料、纳米力学和工程领导力培训暑期实习续期
  • 批准号:
    2046167
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Scalable and reversible computing with integrated nanomechanics
具有集成纳米力学的可扩展和可逆计算
  • 批准号:
    LP190101159
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Linkage Projects
Nanomechanics on rewritable material strength by anomalous electrons
反常电子可重写材料强度的纳米力学
  • 批准号:
    20H05653
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Isolating Field Effects in Sintering via Ultrahigh Temperature In Situ Nanomechanics
通过超高温原位纳米力学隔离烧结中的场效应
  • 批准号:
    1922867
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
LEAP-HI: Ultra-Low Power Computing: A Disruptive Approach Through a New Integrated Nanomechanics Framework
LEAP-HI:超低功耗计算:通过新的集成纳米力学框架的颠覆性方法
  • 批准号:
    1854702
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了