Towards Petascale Simulation of Urban Earthquake Impacts

迈向千万亿级城市地震影响模拟

基本信息

  • 批准号:
    0749227
  • 负责人:
  • 金额:
    $ 160万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-10-01 至 2013-09-30
  • 项目状态:
    已结题

项目摘要

This award is an outcome of the NSF 07-559 program solicitation, "accelerating Discovery in Science and Engineering through Petascale Simulations and Analysis" competition. The lead institution is Carnegie Mellon University, with subawards to the Universities of California at Berkeley, Davis, and San Diego. This award will develop methodologies, capability, and software for high-fidelity, physics-based petascale simulations of an entire high seismicity urban region, the Greater Los Angeles Basin (GLAB), to assess the engineering impacts of large magnitude earthquakes on buildings, transportation system components, and the underground civil infrastructure. Earthquakes are one of the most severe natural hazards facing the United States. Simulating their effects on the built environment is a unique science driver for petascale high-performance computing (HPC) systems because of the multiple length scales with different physics, large data volumes, and need for highly scalable parallel visualization and data querying. Current three-dimensional earthquake simulations have been limited to linear soil behavior and isolated, individual structures. Advancing beyond current approaches, this project will develop simulation capability that includes the interaction between the soil, foundations, and large inventories of structures; the interaction between structures in densely built areas; and the effect of the structures on the free-field motion; as well as the nonlinear soil behavior and the effect of the pore water pressure in saturated soils leading to liquefaction. Current HPC capability is inadequate for these complex simulations. This project will use emerging petascale systems to perform and integrate (1) ground motion simulation of large sedimentary basins, (2) simulation of the nonlinear behavior of soil, (3) simulation of large inventories of buildings, bridges, and other infrastructure systems, (4) computational databases, and (5) scalable visualization techniques. The project will make new advances in a hierarchical, multi-scale methodology for petascale simulation. Going from a large regional, broadband earthquake simulation to multiple subregions will allow detailed modeling in a highly scalable manner to capture site response and structural response accurately for entire inventories. The Domain Reduction Method will be applied for the first time using ground motion from a regional simulation as input for multiple highly populated subregions. These subregions include models of highly nonlinear soil and detailed models of hundreds of buildings and bridges along with embedded foundations. A new scalable implicit-explicit time integration method will be developed to provide optimal computational performance for the complex earthquake simulations for a subregion. Data analysis and visualization capability will be developed to run on the same parallel processors as the simulation, drastically reducing the need to move data. Using this approach for data-intensive supercomputing, in-situ visualization and a new computational database system will allow unprecedented ability to understand earthquake impacts. The new capability will present information that facilitates understanding and decision-making by drilling down to the detail of interest while maintaining the global context. The GLAB was selected because of the high seismic risk, important public policy need, and the wealth of information that it provides for verification and validation. The annual milestones for the GLAB test bed are calibrated to take early advantage of HPC resources, with scaling of the simulations to take place as petascale systems are brought online. The methodology, applications, and the results of the simulations will be useful for disaster planning and management, since it is the detailed knowledge of how an urban system performs in a large earthquake that is needed for improving disaster preparedness and mitigation. Graduate students working on the project will have the opportunity to create new knowledge through multidisciplinary research in civil engineering, computational engineering, and computer science.
该奖项是NSF 07-559计划征集的结果,“通过Petascale模拟和分析加速科学和工程发现”竞赛。 领导机构是卡内基梅隆大学,分奖项给加州大学伯克利分校、戴维斯分校和圣地亚哥分校。该奖项将开发用于整个高地震活动城市区域(大洛杉矶盆地(GLAB))的高保真、基于物理的千万亿次模拟的方法、能力和软件,以评估大震级地震对建筑物、交通系统组件和地下民用基础设施的工程影响。 地震是美国面临的最严重的自然灾害之一。 模拟它们对构建环境的影响是千万亿次高性能计算(HPC)系统的独特科学驱动力,因为具有不同物理特性的多个长度尺度,大数据量,以及对高度可扩展的并行可视化和数据查询的需求。目前的三维地震模拟仅限于线性土壤特性和孤立的单个结构。超越目前的方法,该项目将开发模拟能力,包括土壤,基础和大型库存的结构之间的相互作用;密集建筑区的结构之间的相互作用;和结构对自由场运动的影响;以及非线性土壤行为和饱和土壤中导致液化的孔隙水压力的影响。 目前的HPC能力不足以进行这些复杂的模拟。该项目将使用新兴的千万亿次系统来执行和集成(1)大型沉积盆地的地面运动模拟,(2)土壤非线性行为模拟,(3)建筑物、桥梁和其他基础设施系统的大量库存模拟,(4)计算数据库,以及(5)可扩展的可视化技术。 该项目将在千万亿次模拟的分层,多尺度方法学方面取得新的进展。从一个大的区域,宽带地震模拟到多个子区域,将允许以高度可扩展的方式进行详细建模,以准确地捕捉整个库存的场地响应和结构响应。域缩减方法将首次使用区域模拟的地面运动作为多个人口密集子区域的输入。 这些子区域包括高度非线性土壤模型和数百个建筑物和桥梁的详细模型,沿着嵌入式基础。将开发一种新的可扩展隐式-显式时间积分方法,为一个分区的复杂地震模拟提供最佳计算性能。 数据分析和可视化能力将被开发为在与模拟相同的并行处理器上运行,从而大大减少移动数据的需求。使用这种方法进行数据密集型超级计算,现场可视化和新的计算数据库系统将使人们能够前所未有地了解地震影响。新功能将提供有助于理解和决策的信息,通过深入到感兴趣的细节,同时保持全球背景。GLAB之所以被选中,是因为它具有很高的地震风险,重要的公共政策需求,以及它为验证和确认提供的丰富信息。 GLAB测试台的年度里程碑经过校准,以尽早利用HPC资源,并随着千万亿次系统的上线而扩展模拟。 模拟的方法,应用和结果将有助于灾害规划和管理,因为它是一个城市系统如何在大地震,需要改善备灾和减灾的详细知识。 从事该项目的研究生将有机会通过土木工程,计算工程和计算机科学的多学科研究创造新知识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jacobo Bielak其他文献

Galerkin boundary integral equation method for spontaneous rupture propagation problems
求解自发破裂扩展问题的伽辽金边界积分方程法
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroyuki Goto;Jacobo Bielak
  • 通讯作者:
    Jacobo Bielak
有限要素法と境界積分方程式法を組み合わせた断層破壊の数値解析手法の開発
有限元法与边界积分方程法相结合的断层破裂数值分析方法的发展
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    後藤浩之;Jacobo Bielak;後藤浩之
  • 通讯作者:
    後藤浩之
A simplified version of Gurtin's variational principles
Numerical simulation of dynamic fault rupture propagation based on a combination of BIEM and FEM solutions
基于BIEM与FEM结合的动态断层破裂扩展数值模拟
ガラーキン境界積分方程式法を用いた自発的な断層破壊解析手法の開発
利用伽辽金边界积分方程法开发自发断层破裂分析方法
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    後藤浩之;Jacobo Bielak
  • 通讯作者:
    Jacobo Bielak

Jacobo Bielak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jacobo Bielak', 18)}}的其他基金

Indirect Bridge Health Monitoring Using Moving Vehicles
使用移动车辆进行间接桥梁健康监测
  • 批准号:
    1130616
  • 财政年份:
    2011
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
NEESR-SG: High-fidelity site characterization by experimentation, field observation, and inversion-based modeling
NEESR-SG:通过实验、现场观察和基于反演的建模进行高保真场地表征
  • 批准号:
    0619078
  • 财政年份:
    2006
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
Collaborative Research: ITR/NGS: Multiresolution High Fidelity Earthquake Modeling: Dynamic Rupture, Basin Response, Blind Deconvolution Seismic Inversion, and Ultrascale Computing
合作研究:ITR/NGS:多分辨率高保真地震建模:动态破裂、盆地响应、盲解卷积地震反演和超大规模计算
  • 批准号:
    0326449
  • 财政年份:
    2003
  • 资助金额:
    $ 160万
  • 项目类别:
    Continuing Grant
KDI: Large-Scale Inversion-Based Modeling of Complex Earthquake Ground Motion in Sedimentary Basins
KDI:沉积盆地复杂地震地面运动的大规模反演建模
  • 批准号:
    9980063
  • 财政年份:
    1999
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
Postdoc: Parallel Computations for Wave Propagation Modeling of Large Basins
博士后:大型盆地波浪传播建模的并行计算
  • 批准号:
    9503991
  • 财政年份:
    1995
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
Scientific Supercomputing, Visualization, and Animation in Geotechnical Earthquake Engineering & Engineering Seismology
岩土地震工程中的科学超级计算、可视化和动画
  • 批准号:
    9419696
  • 财政年份:
    1994
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
Seismic Canyon Interaction Effects in Earth and Rockfill Dams
土坝和堆石坝中的地震峡谷相互作用效应
  • 批准号:
    9320824
  • 财政年份:
    1994
  • 资助金额:
    $ 160万
  • 项目类别:
    Continuing Grant
Earthquake Ground Motion Modeling in Large Basins
大盆地地震地面运动模拟
  • 批准号:
    9318163
  • 财政年份:
    1993
  • 资助金额:
    $ 160万
  • 项目类别:
    Continuing Grant
Seismic Ground Motion in Sedimentary Valleys: Focusing or Chaos?
沉积谷地震动:聚焦还是混沌?
  • 批准号:
    9319339
  • 财政年份:
    1993
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
REG: A Computational Mechanics Laboratory
REG:计算力学实验室
  • 批准号:
    9212819
  • 财政年份:
    1992
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant

相似海外基金

Continuation of Petascale Simulation of HED Plasmas
HED 等离子体的千万亿次模拟的延续
  • 批准号:
    1713760
  • 财政年份:
    2017
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
Collaborative Research: Petascale Simulation of Viral Infection Propagation Through Air Travel
合作研究:通过航空旅行传播病毒感染的千万亿级模拟
  • 批准号:
    1640822
  • 财政年份:
    2016
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
Collaborative Research: Petascale Simulation of Viral Infection Propagation Through Air Travel
合作研究:通过航空旅行传播病毒感染的千万亿级模拟
  • 批准号:
    1640911
  • 财政年份:
    2016
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
Collaborative Research: Petascale Simulation of Viral Infection Propogation through Air Travel
合作研究:通过航空旅行传播病毒感染的千万亿级模拟
  • 批准号:
    1640824
  • 财政年份:
    2016
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
CDS&E: Data Management and Visualization in Petascale Turbulent Combustion Simulation
CDS
  • 批准号:
    1250171
  • 财政年份:
    2012
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
PETASCALE BIOMOLECULAR SIMULATION
千万亿级生物分子模拟
  • 批准号:
    8363663
  • 财政年份:
    2011
  • 资助金额:
    $ 160万
  • 项目类别:
PETASCALE BIOMOLECULAR SIMULATION
千万亿级生物分子模拟
  • 批准号:
    8172050
  • 财政年份:
    2010
  • 资助金额:
    $ 160万
  • 项目类别:
High-Fidelity Simulation of Bioelectromagnetic Effects on the Human Body with Petascale Computers
使用千万亿级计算机高保真模拟生物电磁对人体的影响
  • 批准号:
    0904907
  • 财政年份:
    2009
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Whole-genome Evolution through Petascale Simulation
合作研究:通过千万亿次模拟了解全基因组进化
  • 批准号:
    0904461
  • 财政年份:
    2009
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
Petascale Simulation of Turbulent Stellar Hydrodynamics
恒星湍流流体动力学的千万亿次模拟
  • 批准号:
    0832618
  • 财政年份:
    2009
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了