KDI: Large-Scale Inversion-Based Modeling of Complex Earthquake Ground Motion in Sedimentary Basins

KDI:沉积盆地复杂地震地面运动的大规模反演建模

基本信息

  • 批准号:
    9980063
  • 负责人:
  • 金额:
    $ 213.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-09-01 至 2003-08-31
  • 项目状态:
    已结题

项目摘要

The main objective of this research program is to develop the capability to generate realistic inversion-based models of complex basin geology and earthquake sources "by computer simulation" and to use this capability to model and forecast strong ground motions during earthquakes in Los Angeles Basin and the San Francisco Bay Area. This problem is of great importance to earthquake hazard mitigation, since assessing the ground motion experiences by structures during their lifetimes is an essential first step in designing earthquake-resistant facilities, and retrofitting existing structures: ground motion modeling and forecasting are a necessary precursor to the design process. This project involves collaboration between researchers at Carnegie Mellon University, University of California at Berkeley and San Diego State University. The research team, centered at Carnegie Mellon University, consists of earthquake engineers, seismologists, geologists, computational mechanists, computer scientists, and computer graphics and visualization specialist.Computer modeling and forecasting earthquake ground motions in large basins, is a challenging and complex task, with the complexity arising from several sources: multiple spatial scales characterize the basin response (the shortest wavelengths are measured in tens of meters, the longest in kilometers, and basin dimensions are on the order of tens of kilometers); temporal scales vary from the hundredths of a second necessary to resolve the highest frequencies of the earthquake source up to a couple of minutes of shaking within the basin; many basins have highly irregular geometry; the soils; material properties are highly heterogeneous; and geology and source parameters are only indirectly observable, and thus introduce uncertainty into the modeling process. Current earthquake simulations provide much useful information, but are not always capable of adequately reproducing observed seismograms. The likely reason is that these models use a number of restrictive assumptions to reduce the computational requirements. Motivated by the need for greater fidelity in earthquake ground motion modeling the research team is developing enhance models by incorporating the following: (1) The ability to represent physical domains an order of magnitude larger than current models; (2) The ability to model frequencies higher than currently possible; (3) Improved earthquake source models derived from available observation by solving 3D inverse problems; (4) improved basin material models based on the inversion of observations of ground motion within the basin; and (5) The ability to resolve boundary surfaces and sharp interfaces.The drive toward greater fidelity in earthquake modeling introduces computational challenges in all states of the simulation process: from preprocessing, to solving, to postprocessing. This is addressed through a concerted, unified effort in parallel 3D mesh generation, parallel 3D seismic inversion, and large-scale distributed visualization. It is expected that this will result in important advances in physical modeling and algorithm and software tool development for multi-teraflops computers, while gaining physical insight into earthquake ground motion. Because of the critical role that ground motion plays in infrastructure design, the accelerated availability of suitable simulation methodologies will have a direct impact on public safety and welfare.
这项研究计划的主要目标是开发能力,以产生现实的复杂盆地地质和地震源的反演模型“通过计算机模拟”,并使用这种能力来模拟和预测强烈的地面运动在地震期间在洛杉矶盆地和旧金山弗朗西斯科湾区。 这个问题是非常重要的,以减轻地震灾害,因为评估地面运动的经验结构在其寿命是一个重要的第一步,在设计抗震设施,改造现有的结构:地面运动建模和预测是一个必要的先决条件的设计过程。 该项目涉及卡内基梅隆大学、加州大学伯克利分校和圣地亚哥州立大学的研究人员之间的合作。 该研究团队以卡内基梅隆大学为中心,由地震工程师、地震学家、地质学家、计算力学家、计算机科学家以及计算机图形和可视化专家组成。计算机建模和预测大盆地地震地面运动是一项具有挑战性和复杂性的任务,复杂性来自以下几个方面:多个空间尺度表征流域响应(最短波长以几十米为单位测量,最长波长以千米为单位测量,盆地尺寸为几十千米的量级);时间尺度从解析震源最高频率所需的百分之一秒到盆地内几分钟的震动不等;许多盆地具有高度不规则的几何形状;土壤;材料特性高度不均匀;地质和震源参数只能间接观测,因此在建模过程中引入了不确定性。 目前的地震模拟提供了许多有用的信息,但并不总是能够充分再现观测到的地震图。 可能的原因是,这些模型使用了一些限制性的假设,以减少计算的要求。 由于地震地面运动模拟需要更高的保真度,研究小组正在开发增强模型,包括以下内容:(1)表示比当前模型大一个数量级的物理域的能力;(2)模拟比当前可能的频率更高的频率的能力;(3)通过解决三维逆问题从现有观测中获得的改进的震源模型;(4)基于盆地内地面运动观测反演的改进盆地物质模型;(5)解决边界表面和尖锐界面的能力。地震模拟中对更高保真度的追求在模拟过程的所有状态中引入了计算挑战:从预处理到求解,再到后处理。 这是通过一个协调一致的,统一的努力,并行三维网格生成,并行三维地震反演,大规模分布式可视化。 预计这将导致物理建模和算法的重要进展和软件工具开发的多万亿次计算机,同时获得物理洞察地震地面运动。 由于地面运动在基础设施设计中起着至关重要的作用,因此,适当的模拟方法的加速可用性将对公共安全和福利产生直接影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jacobo Bielak其他文献

Galerkin boundary integral equation method for spontaneous rupture propagation problems
求解自发破裂扩展问题的伽辽金边界积分方程法
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroyuki Goto;Jacobo Bielak
  • 通讯作者:
    Jacobo Bielak
有限要素法と境界積分方程式法を組み合わせた断層破壊の数値解析手法の開発
有限元法与边界积分方程法相结合的断层破裂数值分析方法的发展
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    後藤浩之;Jacobo Bielak;後藤浩之
  • 通讯作者:
    後藤浩之
A simplified version of Gurtin's variational principles
Numerical simulation of dynamic fault rupture propagation based on a combination of BIEM and FEM solutions
基于BIEM与FEM结合的动态断层破裂扩展数值模拟
ガラーキン境界積分方程式法を用いた自発的な断層破壊解析手法の開発
利用伽辽金边界积分方程法开发自发断层破裂分析方法
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    後藤浩之;Jacobo Bielak
  • 通讯作者:
    Jacobo Bielak

Jacobo Bielak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jacobo Bielak', 18)}}的其他基金

Indirect Bridge Health Monitoring Using Moving Vehicles
使用移动车辆进行间接桥梁健康监测
  • 批准号:
    1130616
  • 财政年份:
    2011
  • 资助金额:
    $ 213.1万
  • 项目类别:
    Standard Grant
Towards Petascale Simulation of Urban Earthquake Impacts
迈向千万亿级城市地震影响模拟
  • 批准号:
    0749227
  • 财政年份:
    2007
  • 资助金额:
    $ 213.1万
  • 项目类别:
    Continuing Grant
NEESR-SG: High-fidelity site characterization by experimentation, field observation, and inversion-based modeling
NEESR-SG:通过实验、现场观察和基于反演的建模进行高保真场地表征
  • 批准号:
    0619078
  • 财政年份:
    2006
  • 资助金额:
    $ 213.1万
  • 项目类别:
    Standard Grant
Collaborative Research: ITR/NGS: Multiresolution High Fidelity Earthquake Modeling: Dynamic Rupture, Basin Response, Blind Deconvolution Seismic Inversion, and Ultrascale Computing
合作研究:ITR/NGS:多分辨率高保真地震建模:动态破裂、盆地响应、盲解卷积地震反演和超大规模计算
  • 批准号:
    0326449
  • 财政年份:
    2003
  • 资助金额:
    $ 213.1万
  • 项目类别:
    Continuing Grant
Postdoc: Parallel Computations for Wave Propagation Modeling of Large Basins
博士后:大型盆地波浪传播建模的并行计算
  • 批准号:
    9503991
  • 财政年份:
    1995
  • 资助金额:
    $ 213.1万
  • 项目类别:
    Standard Grant
Scientific Supercomputing, Visualization, and Animation in Geotechnical Earthquake Engineering & Engineering Seismology
岩土地震工程中的科学超级计算、可视化和动画
  • 批准号:
    9419696
  • 财政年份:
    1994
  • 资助金额:
    $ 213.1万
  • 项目类别:
    Standard Grant
Seismic Canyon Interaction Effects in Earth and Rockfill Dams
土坝和堆石坝中的地震峡谷相互作用效应
  • 批准号:
    9320824
  • 财政年份:
    1994
  • 资助金额:
    $ 213.1万
  • 项目类别:
    Continuing Grant
Earthquake Ground Motion Modeling in Large Basins
大盆地地震地面运动模拟
  • 批准号:
    9318163
  • 财政年份:
    1993
  • 资助金额:
    $ 213.1万
  • 项目类别:
    Continuing Grant
Seismic Ground Motion in Sedimentary Valleys: Focusing or Chaos?
沉积谷地震动:聚焦还是混沌?
  • 批准号:
    9319339
  • 财政年份:
    1993
  • 资助金额:
    $ 213.1万
  • 项目类别:
    Standard Grant
REG: A Computational Mechanics Laboratory
REG:计算力学实验室
  • 批准号:
    9212819
  • 财政年份:
    1992
  • 资助金额:
    $ 213.1万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
  • 批准号:
    31972875
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
  • 批准号:
    30971650
  • 批准年份:
    2009
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
  • 批准号:
    30800648
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
  • 批准号:
    30772435
  • 批准年份:
    2007
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目

相似海外基金

Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
  • 批准号:
    MR/Y011503/1
  • 财政年份:
    2025
  • 资助金额:
    $ 213.1万
  • 项目类别:
    Fellowship
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
  • 批准号:
    EP/Y027906/1
  • 财政年份:
    2024
  • 资助金额:
    $ 213.1万
  • 项目类别:
    Research Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
  • 批准号:
    2317251
  • 财政年份:
    2024
  • 资助金额:
    $ 213.1万
  • 项目类别:
    Standard Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
  • 批准号:
    2348465
  • 财政年份:
    2024
  • 资助金额:
    $ 213.1万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 213.1万
  • 项目类别:
    Standard Grant
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
  • 批准号:
    2340341
  • 财政年份:
    2024
  • 资助金额:
    $ 213.1万
  • 项目类别:
    Continuing Grant
Continuous, Large-scale Manufacturing of Functionalized Silver Nanowire Transparent Conducting Films
功能化银纳米线透明导电薄膜的连续大规模制造
  • 批准号:
    2422696
  • 财政年份:
    2024
  • 资助金额:
    $ 213.1万
  • 项目类别:
    Standard Grant
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
  • 批准号:
    2339956
  • 财政年份:
    2024
  • 资助金额:
    $ 213.1万
  • 项目类别:
    Continuing Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
  • 批准号:
    2340289
  • 财政年份:
    2024
  • 资助金额:
    $ 213.1万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 213.1万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了