SGER - Vision and RFID for Multimodal Tracking of Working Teams
SGER - 用于工作团队多模式跟踪的视觉和 RFID
基本信息
- 批准号:0749246
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-15 至 2009-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project proposes novel strategies for the automatic capture of teamwork in crowded spaces. The initial goal is to develop new methods for acquisition of people and artifact locations using diverse modalities, including machine vision and radiofrequency identification (RFID). Following, software will be developed in order to integrate these observations and track team members and artifacts over time. Ultimately probabilistic reasoning will be used to identify team tasks based on these unified observations. The representative domain of trauma resuscitation is an ideal environment for this work since the roles and tasks of players are well-defined and the flow of work follows a general schema regardless of the patient's injuries. The system will be tested in simulated trauma scenarios using a robotic mannequin patient. There are two key benefits of this work. First, the process of deriving system requirements for computerized teamwork support systems demands analyzing a large number of observations of current practices. Automatic transcription and tagging of teamwork will allow for efficient capture and interpretation of events and is preferable to more tedious and error-prone observations by experts. Second, automatic tracking of team activities is a needed initial step in the development of "smart rooms" that provide computerized support of teamwork. The core contribution of this project will be a proof-of-concept system integrating tracking of actors and medical objects using computer vision and RFID tracking. The proposed approach will develop novel algorithms and methods for (i) vision-based person tracking in crowded collaborative environments and (ii) fusion of unreliable data from multimodal sensors to achieve reliable recognition of human activities. Broader ImpactsThe scientific importance of this work is in the need to tag video observations. Many forms of videos are of repetitive behaviors, whether in surveillance applications, work situations, or other uses. In all such cases, applying a grammar to the video, and matching actions and sounds to that grammar, has the possibility of greatly simplifying the job of work analysis - a critical phase in the development process of computer support for complex, high-risk human activities. This work will also provide the foundation for implementing decision aids in environments such as trauma resuscitation and related medical domains that lack effective methods for instrument tracking of work.
该项目提出了在拥挤的空间中自动捕获团队合作的新策略。最初的目标是开发新的方法,使用不同的方式,包括机器视觉和射频识别(RFID)的人和工件的位置采集。接下来,将开发软件,以整合这些观察结果,并随着时间的推移跟踪团队成员和工件。最终,概率推理将用于根据这些统一的观察来确定团队任务。创伤复苏的代表性领域是这项工作的理想环境,因为球员的角色和任务是明确定义的,工作流程遵循一个一般的模式,无论病人的伤害。该系统将使用机器人人体模型患者在模拟创伤场景中进行测试。这项工作有两个主要好处。首先,计算机化的团队支持系统的系统需求的推导过程中需要分析大量的观察当前的做法。自动转录和标记团队协作将有助于有效地捕捉和解释事件,比专家进行的更繁琐和容易出错的观察更可取。第二,团队活动的自动跟踪是开发“智能室”的必要的第一步,智能室为团队合作提供计算机化支持。该项目的核心贡献将是一个概念验证系统,该系统集成了使用计算机视觉和RFID跟踪的演员和医疗对象的跟踪。所提出的方法将开发新的算法和方法,用于(i)在拥挤的协作环境中进行基于视觉的人员跟踪,以及(ii)融合来自多模态传感器的不可靠数据,以实现对人类活动的可靠识别。更广泛的影响这项工作的科学重要性在于需要标记视频观察。许多形式的视频都是重复的行为,无论是在监控应用程序中,工作情况下,还是其他用途。在所有这些情况下,将语法应用于视频,并将动作和声音与该语法相匹配,有可能大大简化工作分析的工作-这是计算机支持复杂,高风险人类活动的开发过程中的关键阶段。这项工作还将为在缺乏有效的仪器跟踪工作方法的环境中(如创伤复苏和相关医疗领域)实施决策辅助提供基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivan Marsic其他文献
An image dataset for surveillance of personal protective equipment adherence in healthcare
用于医疗保健中个人防护设备依从性监测的图像数据集
- DOI:
10.1038/s41597-024-04355-0 - 发表时间:
2025-01-17 - 期刊:
- 影响因子:6.900
- 作者:
Wanzhao Yang;Mary S. Kim;Genevieve J. Sippel;Aaron H. Mun;Kathleen H. McCarthy;Beomseok Park;Aleksandra Sarcevic;Marius George Linguraru;Ivan Marsic;Randall S. Burd - 通讯作者:
Randall S. Burd
Piecewise Network Awareness Service for Wireless/Mobile Pervasive Computing
- DOI:
10.1023/a:1015459227426 - 发表时间:
2002-08-01 - 期刊:
- 影响因子:2.000
- 作者:
Liang Cheng;Ivan Marsic - 通讯作者:
Ivan Marsic
Human intention recognition for trauma resuscitation: An interpretable deep learning approach for medical process data
创伤复苏中的人类意图识别:一种针对医疗过程数据的可解释深度学习方法
- DOI:
10.1016/j.jbi.2024.104767 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:4.500
- 作者:
Keyi Li;Mary S. Kim;Wenjin Zhang;Sen Yang;Genevieve J. Sippel;Aleksandra Sarcevic;Randall S. Burd;Ivan Marsic - 通讯作者:
Ivan Marsic
Software Framework for Managing Heterogeneity in Mobile Collaborative Systems
- DOI:
10.1007/s10606-004-5065-5 - 发表时间:
2004-12-01 - 期刊:
- 影响因子:2.300
- 作者:
Carlos D. Correa;Ivan Marsic - 通讯作者:
Ivan Marsic
Ivan Marsic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ivan Marsic', 18)}}的其他基金
CHS: Medium: Collaborative Research: Activity Recognition for Reducing Delays in Fast-Response Teamwork
CHS:中:协作研究:减少快速响应团队合作延迟的活动识别
- 批准号:
1763827 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
HCC-Medium: Collaborative Research: Multimodal Capture of Teamwork in Collocated Collaboration
HCC-Medium:协作研究:协同协作中团队合作的多模式捕获
- 批准号:
0803732 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Collaboration Bus for Environment-Adaptive Groupware
环境自适应组件的协作总线
- 批准号:
0123910 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
老年人群视障风险VISION管控模式构建与实证研究
- 批准号:71974198
- 批准年份:2019
- 资助金额:48.5 万元
- 项目类别:面上项目
相似海外基金
N2Vision+: A robot-enabled, data-driven machine vision tool for nitrogen diagnosis of arable soils
N2Vision:一种由机器人驱动、数据驱动的机器视觉工具,用于耕地土壤的氮诊断
- 批准号:
10091423 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
- 批准号:
2342574 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Professional Visionの可視化による英語教師認知の形成・変容過程の解明
从专业视野可视化阐释英语教师认知的形成与转化过程
- 批准号:
24K00089 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Teachers Learning to be Technology Accessibility Allies to Blind and Low-Vision Students in Science
职业:教师学习成为盲人和低视力学生在科学领域的技术无障碍盟友
- 批准号:
2334693 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
REU Site: Research Experience for Undergraduates in Computer Vision
REU 网站:计算机视觉本科生的研究经验
- 批准号:
2349386 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Vision Servoing Based Micro Continuum Robot Actuated by SMA Wires for Precise Laser Irradiation during Transurethral Lithotripsy
基于视觉伺服的微型连续体机器人由 SMA 线驱动,用于经尿道碎石术期间的精确激光照射
- 批准号:
24K21116 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
2022BBSRC-NSF/BIO Generating New Network Analysis Tools for Elucidating the Functional Logic of 3D Vision Circuits of the Drosophila Brain
2022BBSRC-NSF/BIO 生成新的网络分析工具来阐明果蝇大脑 3D 视觉电路的功能逻辑
- 批准号:
BB/Y000234/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Vision-only structure-from-motion via acoustic video for extreme underwater environment sensing
通过声学视频进行纯视觉运动结构,用于极端水下环境传感
- 批准号:
24K20867 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unifying Object Detection and Image Captioning using Vision-Language Knowledge Base for Open-World Comprehension
使用视觉语言知识库统一对象检测和图像描述以实现开放世界理解
- 批准号:
24K20830 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists