CAREER: Coding Subspaces: Error Correction, Compression and Applications

职业:编码子空间:纠错、压缩和应用

基本信息

  • 批准号:
    2415440
  • 负责人:
  • 金额:
    $ 64.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

In today’s technological world, an enormous amount of data is being constantly generated, transmitted, received, processed, and stored at an unprecedented scale. The classical approach of representing data as blocks of information bits falls short of addressing diverse requirements, including scalability, efficiency, and reliability, of the next generation storage, computation, and communication systems. This project develops an alternative paradigm for transmission of data across massively connected wireless networks by proposing methods to embed the information into mathematical constructs called subspaces (i.e., linear-algebraic objects in a vector space), via a technique called subspace coding. While these structures capture the essence of gathered data in a wide range of signal processing applications, fundamental limits of compression as well as practical and universal techniques to attain these limits are not understood. This project characterizes a natural duality between error correction and compression in the subspace domain and proposes to leverage this connection in order to develop explicit and efficient compression mechanisms for massive data sets that exhibit certain properties. This interdisciplinary project is tied with an education plan and provides a stimulating and innovative research environment for students at all levels. Furthermore, workshops are developed as part of an active outreach program in order to introduce high school students to concepts in fields related to data science and communications, exposing them to careers essential to tomorrow’s workforce.Wireless networks are rapidly growing in size, are becoming more hierarchical, and are becoming increasingly distributed. Conventional methods including channel estimation of point-to-point links and block coding do not properly scale with the size of such massive networks. This project proposes that subspace coding in the analog domain becomes relevant for conveying information across networks in such a scenario. Furthermore, the dual problem in the compression domain is central to a wide range of applications involving large-scale raw data, often exhibiting low-dimensional structures, which require techniques for low-dimensional subspace recovery and dimensionality reduction. The specific objectives of this project are summarized as follows: (1) Provide a comprehensive framework, including a certain metric space and an analog operator channel, to study coding for wireless networks in a non-coherent fashion; (2) Construct subspace codes for analog operator channels and characterize their performance; (3) Develop techniques for low-rank subspace recovery given constrained observations; (4) Characterize fundamental limits on compression of low-rank matrices and leverage the duality with subspace codes to design explicit compression mechanisms; (5) Develop schemes for subspace-coded distributed computation to efficiently compute the outcome of algorithms operating over matrices and subspaces while minimizing the delay.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在当今的技术世界中,以前所未有的规模不断产生、传输、接收、处理和存储大量数据。将数据表示为信息位块的经典方法无法满足下一代存储、计算和通信系统的各种需求,包括可伸缩性、效率和可靠性。该项目通过一种称为子空间编码的技术,提出将信息嵌入到称为子空间(即向量空间中的线性代数对象)的数学结构中的方法,为跨大规模连接的无线网络传输数据开发了另一种范例。虽然这些结构在广泛的信号处理应用中捕获了收集数据的本质,但压缩的基本限制以及实现这些限制的实用和通用技术尚不清楚。该项目描述了子空间领域中纠错和压缩之间的自然对偶性,并建议利用这种联系为具有某些属性的大量数据集开发明确而有效的压缩机制。这个跨学科的项目与一个教育计划联系在一起,为各级学生提供了一个激励和创新的研究环境。此外,为了向高中生介绍与数据科学和通信相关领域的概念,使他们接触到对未来劳动力至关重要的职业,作为积极推广计划的一部分,开发了讲习班。无线网络的规模正在迅速扩大,层次越来越分明,分布也越来越分散。传统的点对点链路信道估计和分组编码等方法无法适应如此庞大网络的规模。该项目提出,模拟域的子空间编码与在这种情况下跨网络传输信息相关。此外,压缩领域的对偶问题对于涉及大规模原始数据的广泛应用至关重要,这些数据通常表现为低维结构,这需要低维子空间恢复和降维技术。该项目的具体目标总结如下:(1)提供一个全面的框架,包括一定的度量空间和模拟运营商信道,以非相干方式研究无线网络的编码;(2)构建模拟运营商信道的子空间码,并对其性能进行表征;(3)开发基于受限观测的低秩子空间恢复技术;(4)描述低秩矩阵压缩的基本限制,并利用与子空间码的对偶性设计显式压缩机制;(5)开发子空间编码分布式计算方案,以有效地计算在矩阵和子空间上运行的算法的结果,同时最小化延迟。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hessam Mahdavifar其他文献

Compound polar codes
复合极码
Polar Coding for Non-Stationary Channels
Matrix Completion over Finite Fields: Bounds and Belief Propagation Algorithms
有限域上的矩阵补全:界限和置信传播算法
Asymptotically optimal sticky-insertion-correcting codes with efficient encoding and decoding
具有高效编码和解码的渐近最优粘性插入校正码
Projective Systematic Authentication via Reed-Muller Codes
通过 Reed-Muller 码进行投影系统认证
  • DOI:
    10.48550/arxiv.2404.09088
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hsuan;Hessam Mahdavifar
  • 通讯作者:
    Hessam Mahdavifar

Hessam Mahdavifar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hessam Mahdavifar', 18)}}的其他基金

Collaborative Research: CIF: Small: Designing Plotkin Transform Codes via Machine Learning
协作研究:CIF:小型:通过机器学习设计 Plotkin 转换代码
  • 批准号:
    2312752
  • 财政年份:
    2023
  • 资助金额:
    $ 64.84万
  • 项目类别:
    Standard Grant
CAREER: Coding Subspaces: Error Correction, Compression and Applications
职业:编码子空间:纠错、压缩和应用
  • 批准号:
    1941633
  • 财政年份:
    2020
  • 资助金额:
    $ 64.84万
  • 项目类别:
    Continuing Grant
CIF: Small: Collaborative Research: Communications in Ultra-Low-Rate Regime: Fundamental Limits, Code Constructions, and Applications
CIF:小型:协作研究:超低速率制度下的通信:基本限制、代码构造和应用
  • 批准号:
    1909771
  • 财政年份:
    2019
  • 资助金额:
    $ 64.84万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: New Frontiers in Polar Coding: 5G and Beyond
CIF:媒介:协作研究:Polar 编码的新前沿:5G 及以上
  • 批准号:
    1763348
  • 财政年份:
    2018
  • 资助金额:
    $ 64.84万
  • 项目类别:
    Continuing Grant

相似国自然基金

long non-coding RNA(lncRNA)-activatedby TGF-β(lncRNA-ATB)通过成纤维细胞影响糖尿病创面愈合的机制研究
  • 批准号:
    LQ23H150003
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Non-coding RNA在RAS抑制剂治疗IgA肾病疗效差异中的作用及机制研究
  • 批准号:
    81770709
  • 批准年份:
    2017
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
水稻细菌性褐条病菌致病相关non-coding RNAs的鉴定、功能及调控机制研究
  • 批准号:
    31571971
  • 批准年份:
    2015
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
Long non-coding RNA MEG3分子对胶质瘤干细胞调控作用的研究
  • 批准号:
    81402438
  • 批准年份:
    2014
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
调控家蚕发育非编码RNA(non-coding RNA, ncRNA)的功能解析
  • 批准号:
    31172158
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
保守非基因序列(CNGs),非编码RNA序列(Non-coding RNAs)和内含子(Introns)的信息论研究和功能预测
  • 批准号:
    90403010
  • 批准年份:
    2004
  • 资助金额:
    25.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Designing and Studying Collaborative Coding Experiences for Middle School Computer Science Education
设计和研究中学计算机科学教育的协作编码体验
  • 批准号:
    2342632
  • 财政年份:
    2024
  • 资助金额:
    $ 64.84万
  • 项目类别:
    Standard Grant
Unlocking Students Potential in Programming with Coding Bootcamps
通过编码训练营释放学生的编程潜力
  • 批准号:
    2345072
  • 财政年份:
    2024
  • 资助金额:
    $ 64.84万
  • 项目类别:
    Standard Grant
筋萎縮性側索硬化症における疾患関連non-coding RNA探索と標的化輸送による治療法開発
肌萎缩侧索硬化症中疾病相关非编码 RNA 的发现以及通过靶向递送开发治疗方法
  • 批准号:
    24K10640
  • 财政年份:
    2024
  • 资助金额:
    $ 64.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Using whole genome sequencing to identify non-coding elements associated with diabetes and related traits across ancestries
使用全基因组测序来识别与糖尿病相关的非编码元件和跨祖先的相关特征
  • 批准号:
    MR/Y003748/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.84万
  • 项目类别:
    Research Grant
GREAT: Genome Refactoring and Engineering Approach to study non-coding genes driving Translation
伟大:研究驱动翻译的非编码基因的基因组重构和工程方法
  • 批准号:
    EP/Y024753/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.84万
  • 项目类别:
    Research Grant
Human functional genomics of post-translationally modifying clinical coding variants: FGx-PTMv
翻译后修饰临床编码变体的人类功能基因组学:FGx-PTMv
  • 批准号:
    MR/Y031091/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.84万
  • 项目类别:
    Research Grant
Non-Coding RNAs in Gene Regulation, Genome Defense, and Epigenetic Inheritance
基因调控、基因组防御和表观遗传中的非编码 RNA
  • 批准号:
    10551436
  • 财政年份:
    2023
  • 资助金额:
    $ 64.84万
  • 项目类别:
Understanding the role of ribosome-associated long non-coding RNA in cancers of the neural crest
了解核糖体相关长非编码 RNA 在神经嵴癌中的作用
  • 批准号:
    2879751
  • 财政年份:
    2023
  • 资助金额:
    $ 64.84万
  • 项目类别:
    Studentship
Activation of long non-coding RNA by a gene therapy CRISPR/Cas9 approach to prevent vein graft failure
通过基因治疗 CRISPR/Cas9 方法激活长非编码 RNA 以预防静脉移植失败
  • 批准号:
    EP/X024563/1
  • 财政年份:
    2023
  • 资助金额:
    $ 64.84万
  • 项目类别:
    Research Grant
Collaborative Research: CIF: Small: Theory for Learning Lossless and Lossy Coding
协作研究:CIF:小型:学习无损和有损编码的理论
  • 批准号:
    2324396
  • 财政年份:
    2023
  • 资助金额:
    $ 64.84万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了