Hodge Theory and Motives
霍奇理论和动机
基本信息
- 批准号:0754127
- 负责人:
- 金额:$ 14.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-01 至 2013-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main thrust of the project is the construction of a theory of relative motives, or more precisely motivic local systems, over an algebraic variety defined over a field of complex numbers or a subfield. These objects should exist in the abstract, and form a category with good properties (it should be abelian and tannakian). Furthermore they should be realizable by locally constant sheaves on the classical and etale topologies, as well as by variations of mixed Hodge structures. The hope is that this theory should provide a good framework in which to study Hodge theory for families. Such a theory would have a number of ramifications: It would lead to the motivic fundamental group of an algebraic variety which would be related to the usual fundamental group. And it could used in the study of bundles over a curve. There are a couple of subprojects which are separate from the above. These involve the study of vanishing theorems by positive characteristic techniques, and the study of Kaehler-de Rham cohomology.Algebraic varieties are basic objects in mathematics; they are sets of solutions of systems of algebraic equations. Their study has found interactions with areas as diverse as mathematical physics and cryptography. Indeed Hodge theory, which is the subject of this project, was partly motivated by physical ideas. The goal of this project is to further the understanding of the Hodge theory of varieties by replacing them with simpler objects called motives. The collection of motives would be fine enough to reflect much of the original structure of algebraic varieties, but they would posses a "linear" structure which makes them easier to handle.
该项目的主旨是建设一个理论的相对动机,或更准确地motivic当地系统,在代数品种定义的领域复杂的数字或一个子域。这些对象应该抽象地存在,并形成一个具有良好性质的范畴(它应该是阿贝尔和坦纳基的)。此外,他们应该是可实现的局部常数层的经典和etale拓扑结构,以及混合霍奇结构的变化。希望这个理论能提供一个很好的框架来研究霍奇家庭理论。 这样的理论会有许多分支:它会导致一个代数簇的motivic基本群,它会与通常的基本群相关。它可以用于研究曲线上的丛。有几个子项目与上述项目分开。这些涉及消失定理的研究,积极的特征技术,并研究Kaehler-de Rham上同调。代数品种是数学的基本对象,他们是一套解决方案的系统代数方程。 他们的研究发现了与数学物理和密码学等不同领域的相互作用。事实上,霍奇理论,这是本项目的主题,部分动机是物理思想。这个项目的目标是进一步理解霍奇理论的品种取代他们更简单的对象称为动机。 动机的集合将是足够好的,以反映大部分的原始结构的代数簇,但他们将是一个“线性”的结构,使他们更容易处理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donu Arapura其他文献
Smoothable varieties with torsion free canonical sheaf
- DOI:
10.1007/bf01173698 - 发表时间:
1989-03-01 - 期刊:
- 影响因子:0.600
- 作者:
Donu Arapura - 通讯作者:
Donu Arapura
Donu Arapura的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donu Arapura', 18)}}的其他基金
Birational Geometry and Hodge Theory
双有理几何和霍奇理论
- 批准号:
0500659 - 财政年份:2005
- 资助金额:
$ 14.1万 - 项目类别:
Continuing Grant
Birational Geometry and Hodge Theory
双有理几何和霍奇理论
- 批准号:
0100598 - 财政年份:2001
- 资助金额:
$ 14.1万 - 项目类别:
Continuing Grant
Mathematical Sciences: Fundamental Groups and Algebraic Geometry
数学科学:基本群和代数几何
- 批准号:
9623184 - 财政年份:1996
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Mathematical Sciences: "Fundamental Groups Of Quasiprojective Varieties"
数学科学:“拟射影簇的基本群”
- 批准号:
9302531 - 财政年份:1993
- 资助金额:
$ 14.1万 - 项目类别:
Continuing Grant
Mathematical Sciences: Variations on Hodge Structure
数学科学:Hodge 结构的变体
- 批准号:
9103203 - 财政年份:1991
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Asymptotic Hodge Theory, Fibered Motives, and Algebraic Cycles
渐近霍奇理论、纤维动机和代数圈
- 批准号:
2101482 - 财政年份:2021
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Research on arithmetic phenomena via generalized theory of motives
通过广义动机理论研究算术现象
- 批准号:
21K13783 - 财政年份:2021
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Period Domains, Motives, and Ramification Theory in Arithmetic Geometry
算术几何中的周期域、动机和衍生理论
- 批准号:
2001182 - 财政年份:2020
- 资助金额:
$ 14.1万 - 项目类别:
Continuing Grant
A generalization of the theory of motives of algebraic varieties
代数簇动机理论的推广
- 批准号:
19K23413 - 财政年份:2019
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Iwasawa theory, Galois representations and motives
岩泽理论、伽罗瓦表示和动机
- 批准号:
402071-2011 - 财政年份:2017
- 资助金额:
$ 14.1万 - 项目类别:
Discovery Grants Program - Individual
Iwasawa theory, Galois representations and motives
岩泽理论、伽罗瓦表示和动机
- 批准号:
402071-2011 - 财政年份:2016
- 资助金额:
$ 14.1万 - 项目类别:
Discovery Grants Program - Individual
Iwasawa theory, Galois representations and motives
岩泽理论、伽罗瓦表示和动机
- 批准号:
402071-2011 - 财政年份:2015
- 资助金额:
$ 14.1万 - 项目类别:
Discovery Grants Program - Individual
K-Theory, Cyclic Homology, and Motives
K 理论、循环同调和动机
- 批准号:
1505539 - 财政年份:2015
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Arithmetic of differential operators, K-theory and periods of motives
微分算子算法、K 理论和动机周期
- 批准号:
1502296 - 财政年份:2015
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Application of the theory of motives to various cohomology theories and period integral
动机理论在各种上同调理论和周期积分中的应用
- 批准号:
15H02048 - 财政年份:2015
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for Scientific Research (A)