Period Domains, Motives, and Ramification Theory in Arithmetic Geometry

算术几何中的周期域、动机和衍生理论

基本信息

  • 批准号:
    2001182
  • 负责人:
  • 金额:
    $ 41.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

This award supports the principal investigators' research in arithmetic geometry. At its heart, arithmetic geometry is concerned with integer (or rational) solutions of polynomial equations, seeking to better understand numbers through their geometric structure. Famous questions in arithmetic geometry include the celebrated Fermat's Last Theorem. In particular, the PIs will study branching behavior (called "ramification") of these geometric objects, and they will investigate parameter spaces that describe them (called "period domains"). New technology developed by the PIs and others -- including upper ramification groups of an arbitrary henselian valuation ring, heights of motives, and motive versions of the Manin conjecture and the Vojta conjecture -- should allow for major progress on open questions in these areas. The project also provides support for the PIs to write books for researchers working in similar areas and provides research training opportunities for graduate students.The principal investigator intends to strengthen his study of ramification theory of schemes and of ell-adic sheaves, various extended period domains, and motives over number fields in arithmetic geometry connecting these subjects, and to study related problems (heights of motives, heights of variation of Hodge structures, Hodge theoretic Nevanlinna theory, zeta functions, Tamagawa number conjecture, Iwasawa theory, Sharifi conjecture, asymptotic behaviors of Beilinson regulators and period integrals which appear in physics etc.). The PI defined heights of motives, and formulated motive versions of the Manin conjecture and the Vojta conjecture about heights of points of an algebraic variety. He intends to obtain non-trivial results on these motive versions. The PI started the Hodge theoretic Nevanliina theory. He plans to make new progress in Hodge theory basing on this Nevanlinna point of view. The PI will collaborate with the co-principal investigator T. Fukaya to study Sharifi conjectures and to study the arithmetic of non-commutative rings.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持主要研究人员在算术几何方面的研究。算术几何的核心是多项式方程的整数(或有理)解,试图通过它们的几何结构更好地理解数字。算术几何中著名的问题包括著名的费马大定理。特别是,PI将研究这些几何对象的分支行为(称为“分支”),他们将研究描述它们的参数空间(称为“周期域”)。由PI和其他人开发的新技术-包括任意Henselian赋值环的上分支群,动机的高度,以及Manin猜想和Vojta猜想的动机版本-应该允许在这些领域的开放问题上取得重大进展。该项目还支持研究所为类似领域的研究人员撰写书籍,并为研究生提供研究培训机会。首席研究员打算加强对概型和ell-adic层的分歧理论、各种扩展周期域和算术几何中数域的动机的研究,并研究相关问题(动机的高度,Hodge结构的高度变化,Hodge理论的Nevanlinna理论,zeta函数,Tamagawa数猜想,Iwasawa理论,Sharifi猜想,Beilinson调节器的渐近行为和物理学中出现的周期积分等)。PI定义了动机的高度,并制定了关于代数簇的点的高度的Manin猜想和Vojta猜想的动机版本。他打算在这些动机版本上获得重要的结果。PI开创了Hodge理论的Nevanliina理论。他计划在此基础上对霍奇理论进行新的发展。主要研究者将与共同主要研究者T.该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Logarithmic abelian varieties, Part VII: Moduli
对数阿贝尔簇,第七部分:模数
On log motives
关于日志动机
  • DOI:
    10.2140/tunis.2020.2.733
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Ito, Tetsushi;Kato, Kazuya;Nakayama, Chikara;Usui, Sampei
  • 通讯作者:
    Usui, Sampei
Logarithmic Structures of Fontaine-Illusie. II ---Logarithmic Flat Topology
Fontaine-Illusie 的对数结构。
  • DOI:
    10.3836/tjm/1502179316
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    KATO, Kazuya
  • 通讯作者:
    KATO, Kazuya
Deligne–Beilinson cohomology and log Hodge theory
Deligne–Beilinson 上同调和对数 Hodge 理论
  • DOI:
    10.3792/pjaa.99.006
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Kato, Kazuya;Nakayama, Chikara;Usui, Sampei
  • 通讯作者:
    Usui, Sampei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kazuya Kato其他文献

Heights of motives
动机的高度
  • DOI:
    10.3792/pjaa.90.49
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kazuya Kato
  • 通讯作者:
    Kazuya Kato
Unramified class field theory of arithmetical surfaces
算术曲面的无分支域论
  • DOI:
    10.2307/1971173
  • 发表时间:
    1983
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Kazuya Kato;S. Saito
  • 通讯作者:
    S. Saito
代数曲面のガロワ埋め込み
代数曲面的伽罗瓦嵌入
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takeshi Kajiwara;Kazuya Kato;Chikara Nakayama;Masaki Hanamura;Masaki Hanamura;Masaki Hanamura;Masaki Hanamura;Masaki Hanamura;Masaki Hanamura;Masaki Hanamura;斉藤盛彦;斉藤盛彦;斉藤盛彦;Kenji Koike;小池健二;小池健二;H. Tokunaga and K. Tumenbayar;小池健二;Hiroyuki Hayashi and Hisao Yoshihara;Hisao Yoshihara;H. Tokunaga;吉原久夫;吉原久夫
  • 通讯作者:
    吉原久夫
Symmetric bilinear forms, quadratic forms and MilnorK-theory in characteristic two
特征二中的对称双线性形式、二次形式和 MilnorK 理论
  • DOI:
    10.1007/bf01389226
  • 发表时间:
    1982
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Kazuya Kato
  • 通讯作者:
    Kazuya Kato
Modular symbols and the integrality of zeta elements
模块化符号和 zeta 元素的完整性
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Fukaya;Kazuya Kato;R. Sharifi
  • 通讯作者:
    R. Sharifi

Kazuya Kato的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kazuya Kato', 18)}}的其他基金

Period Domains and Number Theory
周期域和数论
  • 批准号:
    1601861
  • 财政年份:
    2016
  • 资助金额:
    $ 41.4万
  • 项目类别:
    Continuing Grant
Period domains and related studies in arithmetic
算术中的周期域和相关研究
  • 批准号:
    1303421
  • 财政年份:
    2013
  • 资助金额:
    $ 41.4万
  • 项目类别:
    Continuing Grant
Classifying spaces of degenerating Hodge structures, the p-adic analogue, and related arithmetic study
退化 Hodge 结构的分类空间、p-adic 类似物以及相关算术研究
  • 批准号:
    1001729
  • 财政年份:
    2010
  • 资助金额:
    $ 41.4万
  • 项目类别:
    Continuing Grant
Motives Associated to Graphs
与图相关的动机
  • 批准号:
    0653004
  • 财政年份:
    2007
  • 资助金额:
    $ 41.4万
  • 项目类别:
    Continuing Grant

相似海外基金

Experiences of early-stage cervical cancer and fertility sparing surgery: an ethnographic and co-creative approach to social and intimate domains
早期宫颈癌和保留生育手术的经验:社会和亲密领域的民族志和共同创造方法
  • 批准号:
    EP/Y023617/1
  • 财政年份:
    2023
  • 资助金额:
    $ 41.4万
  • 项目类别:
    Fellowship
The role of ELMOD family proteins and their genetic network in the development of specialized membrane domains on the Arabidopsis pollen surface
ELMOD家族蛋白及其遗传网络在拟南芥花粉表面特殊膜结构域发育中的作用
  • 批准号:
    2240972
  • 财政年份:
    2023
  • 资助金额:
    $ 41.4万
  • 项目类别:
    Standard Grant
CUE-T: Micro-credentials for Integrating Computing Responsibly into Other (MICRO) Domains in Colleges of Education
CUE-T:将计算负责任地集成到教育学院其他 (MICRO) 领域的微证书
  • 批准号:
    2241914
  • 财政年份:
    2023
  • 资助金额:
    $ 41.4万
  • 项目类别:
    Standard Grant
Structure-Preserving Finite Element Methods for Incompressible Flow on Smooth Domains and Surfaces
光滑域和表面上不可压缩流动的保结构有限元方法
  • 批准号:
    2309425
  • 财政年份:
    2023
  • 资助金额:
    $ 41.4万
  • 项目类别:
    Standard Grant
How does the cerebellum contribute to neocortical processing across functional domains? Using selective recruitment to test the role of the cerebellum in the coordination of mental processes.
小脑如何促进跨功能域的新皮质处理?
  • 批准号:
    489644
  • 财政年份:
    2023
  • 资助金额:
    $ 41.4万
  • 项目类别:
    Operating Grants
Exploring the role of RuBisCo binding domains in algal carbon fixation
探索 RuBisCo 结合域在藻类固碳中的​​作用
  • 批准号:
    2885461
  • 财政年份:
    2023
  • 资助金额:
    $ 41.4万
  • 项目类别:
    Studentship
Games Realising Effective and Affective Transformation (societal and cultural domains)
实现有效和情感转变的游戏(社会和文化领域)
  • 批准号:
    10054230
  • 财政年份:
    2023
  • 资助金额:
    $ 41.4万
  • 项目类别:
    EU-Funded
DynaLines. Drawing lines in a dynamic environment: delineating domains from base to tip in plants
动力线。
  • 批准号:
    EP/Y010116/1
  • 财政年份:
    2023
  • 资助金额:
    $ 41.4万
  • 项目类别:
    Research Grant
Imagined Life Course Constructed through "New Educational Domains" in Contemporary Asia
当代亚洲“教育新领域”构建的想象人生历程
  • 批准号:
    23K17291
  • 财政年份:
    2023
  • 资助金额:
    $ 41.4万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Fredholm Alternative Quadrature: A Novel Framework for Numerical Integration Over Geometrically Complex Domains
Fredholm 替代求积:几何复杂域上数值积分的新颖框架
  • 批准号:
    2309712
  • 财政年份:
    2023
  • 资助金额:
    $ 41.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了