FRG: Collaborative Research: How the Algebraic Topology of Closed Manifold Relates to Strings and 2D Quantum Field Theory
FRG:协作研究:闭流形的代数拓扑如何与弦和二维量子场论相关
基本信息
- 批准号:0757293
- 负责人:
- 金额:$ 22.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Two dimensional quantum field theory and string theory are mathematically very interesting but still not precisely defined. Two dimensional field theories are algebraic and analytic structures associated to geometric surfaces. String theories are averages or integrals of two dimensional field theories over all surface geometries. In this project we study various two dimensional field theories , their integrals and their common underlying structure. For example we will study a supersymmetric refinement of the Atiyah-Segal-Witten notion of 2D field theories with a nontrivial internal stucture related to modular forms. The point here is to construct examples and relate these ideas to the topological modular form cohomology theory. We will explore a new infinity categorical version of 2D field theory. There are many natural examples to investigate and categorifications of two dimensional theories relate to three dimensional topological quantum field theories. We intend to clarify the "string topology" two dimensional field theories associated to any "target manifold" . These theories feature a master equation solution, dX + X*X = 0, required to form the analogue of the string theory integral. The algebraic formalism resonates with the J holomorphic curves of symplectic topology. More generally, we will research the conceptual meaning of solutions to master equations, deformations of structures with duality, and the formalism related to multilinear functions or operations called correlators. The different parts of science and mathematics are woven together in a rich tapestry and this phenomenon is well illustrated by the above. The studies of this project will impact a wide range of younger researchers in the universities as well as PhD students and undergraduates. Other impacts might eventually include improved technology. Practical applications by scientists are sometimes accidental like penicillin and synthetic rubber. Sometimes however, like the discovery of transistors and microelectronics, they depend on a deep understanding of subjects like quantum theory. A very speculative application of a deeper understanding of two dimensional quantum field theory, the subject of this project, could be to the physical realization of quantum computers. One knows quantum computers can theoretically solve problems not known to be solved theoretically by non quantum computing systems. One such problem is the theoretical possibility of cracking the factorization part of the security systems used by financial systems and government agencies. The technical difficulties to realizing quantum computers can be recast according to Michael Freedman, using the three dimensional topological theories alluded to above. Furthermore the relationship of these three dimensional theories with two dimensional theories suggests a direction to look to solve the technical difficulties: the experimental physics that takes place in two dimensions, the very active area of condensed matter research. There is an opportunity just now to organize these different perspectives and energies of the participants of the project into a coherent campaign to illuminate the area. The circle of ideas from two dimensional field theory, string theory, and deformations of structures with duality may very well become an important organizing center for twenty first century mathematics in the way that topology influenced the twentieth century.
二维量子场理论和弦理论在数学上非常有趣,但仍然没有精确定义。二维场理论是与几何表面相关的代数和分析结构。弦理论是二维场理论在所有表面几何上的平均或积分。在这个项目中,我们研究各种二维场论,它们的积分和它们共同的基本结构。例如,我们将研究具有与模形式相关的非平凡内部结构的2D理论的Atiyah-Segal-维滕概念的超对称环。这里的重点是构造例子,并将这些思想与拓扑模形式上同调理论联系起来。我们将探索一个新的不确定性分类版本的二维场理论。有许多自然的例子来研究和验证二维理论与三维拓扑量子场论的关系。我们打算澄清“弦拓扑”二维场理论与任何“目标流形”。这些理论都有一个主方程解dX + X*X = 0,这是形成弦理论积分的类似物所必需的。代数形式主义与辛拓扑的J全纯曲线共鸣。更一般地说,我们将研究主方程的解的概念意义,对偶结构的变形,以及与多线性函数或称为双线性算子的运算相关的形式主义。科学和数学的不同部分交织在一起,形成了一幅丰富的织锦,上面的例子很好地说明了这一现象。该项目的研究将影响到大学中广泛的年轻研究人员以及博士生和本科生。其他影响最终可能包括技术的改进。科学家的实际应用有时是偶然的,就像青霉素和合成橡胶一样。然而,有时,就像晶体管和微电子学的发现一样,它们依赖于对量子理论等学科的深刻理解。对二维量子场论的更深入理解的一个非常投机的应用,这个项目的主题,可能是量子计算机的物理实现。量子计算机理论上可以解决非量子计算系统理论上无法解决的问题。其中一个问题是破解金融系统和政府机构使用的安全系统的因子分解部分的理论可能性。根据Michael Freedman的说法,实现量子计算机的技术困难可以使用上面提到的三维拓扑理论来重新设计。此外,这些三维理论与二维理论的关系表明了一个解决技术难题的方向:在二维中发生的实验物理,凝聚态研究的非常活跃的领域。现在有机会将项目参与者的这些不同观点和能量组织成一个连贯的运动,以照亮该地区。二维场论、弦论和对偶结构变形的思想圈很可能成为20世纪数学的重要组织中心,就像拓扑学在20世纪的作用一样。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Hopkins其他文献
Optimizing the hardness of SLA printed objects by using the neural network and genetic algorithm
利用神经网络和遗传算法优化SLA打印物体的硬度
- DOI:
10.1016/j.promfg.2020.01.016 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
G. Hu;Z. Cao;Michael Hopkins;Conor Hayes;Mark Daly;Haiying Zhou;D. Devine - 通讯作者:
D. Devine
Time to Next Available Appointment as an Access to Care Metric.
下次可用预约的时间作为获得护理的指标。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:2.3
- 作者:
S. Brar;Michael Hopkins;David Margolius - 通讯作者:
David Margolius
Short Communication Neural correlates of bimodal speech and gesture comprehension q
双模态言语和手势理解的短交流神经相关性
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
S. Kelly;Corinne Kravitz;Michael Hopkins - 通讯作者:
Michael Hopkins
Thyroid function post laryngectomy and hemithyroidectomy - do all laryngectomy patients need thyroid replacement?
- DOI:
10.1016/j.ejso.2020.11.165 - 发表时间:
2021-02-01 - 期刊:
- 影响因子:
- 作者:
Lucy Li;Michael Hopkins;Iain Nixon;Ashley Hay - 通讯作者:
Ashley Hay
Behavioral Learning in a Cognitive Neuromorphic Robot: An Behavioral Learning in a Cognitive Neuromorphic Robot: An Integrative Approach Integrative Approach
认知神经形态机器人中的行为学习:认知神经形态机器人中的行为学习:一种综合方法 综合方法
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Ieee Alexander D. Rast Member;Samantha V. Adams;Simon Davidson;Sergio Davies;Michael Hopkins;Andrew Rowley;A. B. Stokes;Thomas Wennekers;Fellow Ieee Steve Furber;Angelo Cangelosi;S. Rast;M. Davies;A. Hopkins;Rowley - 通讯作者:
Rowley
Michael Hopkins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Hopkins', 18)}}的其他基金
Applications of homotopy theory to algebraic geometry and physics
同伦理论在代数几何和物理学中的应用
- 批准号:
2305373 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Standard Grant
Optimising Covid-19 Testing System (OCTS)
优化 Covid-19 测试系统 (OCTS)
- 批准号:
ES/W00156X/1 - 财政年份:2021
- 资助金额:
$ 22.09万 - 项目类别:
Research Grant
Covid-19 international comparative research and rapid knowledge exchange hub on diagnostic testing systems
Covid-19诊断测试系统国际比较研究和快速知识交流中心
- 批准号:
ES/V004441/1 - 财政年份:2020
- 资助金额:
$ 22.09万 - 项目类别:
Research Grant
New Directions in Homology of Moduli Spaces
模空间同调的新方向
- 批准号:
1803766 - 财政年份:2018
- 资助金额:
$ 22.09万 - 项目类别:
Standard Grant
Porphyrin monolayers as platforms for the supramolecular organization of fullerenes at interfaces
卟啉单层作为富勒烯界面超分子组织的平台
- 批准号:
1611033 - 财政年份:2016
- 资助金额:
$ 22.09万 - 项目类别:
Standard Grant
Foresight Study on European Stakeholder Appraisal of Diagnostics to Manage Anti-Microbial Resistance
欧洲利益相关者对抗菌药物耐药性管理诊断评估的前瞻研究
- 批准号:
MR/N014316/1 - 财政年份:2016
- 资助金额:
$ 22.09万 - 项目类别:
Research Grant
New Algebraic Structures in Topology
拓扑中的新代数结构
- 批准号:
1510417 - 财政年份:2015
- 资助金额:
$ 22.09万 - 项目类别:
Continuing Grant
Novel method for tracking the translation processes that lead to impact from Biomedical research - A pilot study
用于跟踪生物医学研究影响的翻译过程的新方法 - 一项试点研究
- 批准号:
MR/M00838X/1 - 财政年份:2014
- 资助金额:
$ 22.09万 - 项目类别:
Research Grant
FRG: Collaborative proposal: In and Around Theory X
FRG:合作提案:理论 X 的内部和周围
- 批准号:
1158983 - 财政年份:2012
- 资助金额:
$ 22.09万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Continuing Grant