New Algebraic Structures in Topology
拓扑中的新代数结构
基本信息
- 批准号:1510417
- 负责人:
- 金额:$ 85.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The field of homotopy theory is the study of mathematical invariants that are insensitive to deformations. It is applicable whenever one is interested in studying qualitative aspects of a system, or whenever there might be imprecision in the specification of the state of a system. In recent years the methods of homotopy theory have found use in fields as diverse as condensed matter physics and the foundations of mathematics. This project aims to bolster these relationships with new tools from algebraic topology, and to apply them to other areas of mathematics and science. There are applications of this work to condensed matter physics, classical algebraic geometry, and, in the long term, to education.The scope of this project involves several interrelated areas of study. One of these, on algebraic vector bundles, depicts a new interface between complex analysis and algebraic topology, and is intended to get at the obstruction to topological vector bundles having algebraic structures. Another organizes tools developed for the study of differential manifolds into higher categories, in service of providing a general topological expression for the evaluation of "Gaussian integrals" in topological quantum field theories. The two principal investigators will work jointly on a project designed to establish a striking, conjectured, structural result for "groups of units" occurring in algebraic topology. This result has implications for the construction of topological quantum field theories and offers a potentially new approach to understanding the "homotopy groups of spheres." Three further projects involve new generalizations of ideas in homotopy theory, in the contexts of algebraic K-theory, "transchromatic homotopy theory" and in a relationship between Goodwillie calculus and the construction of "smash" products in the stabilizatons of infinity categories.
同伦理论的领域是研究对变形不敏感的数学不变量。当人们对研究系统的定性方面感兴趣时,或者在系统状态的说明中可能存在不精确的时候,它都适用。近年来,同伦理论的方法在凝聚态物理和数学基础等领域得到了广泛的应用。这个项目旨在用代数拓扑学中的新工具来支持这些关系,并将它们应用到数学和科学的其他领域。这项工作在凝聚态物理、经典代数几何以及长期的教育中都有应用。这个项目的范围涉及几个相互关联的研究领域。其中之一,在代数向量丛上,刻画了复分析与代数拓扑学之间的一种新的接口,旨在克服具有代数结构的拓扑向量丛的障碍。另一种是将为研究微分流形而开发的工具组织到更高的类别中,以便为拓扑量子场论中的“高斯积分”的计算提供一个通用的拓扑表达式。两位主要研究人员将共同致力于一个项目,该项目旨在为代数拓扑学中出现的“单元组”建立一个引人注目的、猜想的、结构性的结果。这一结果对拓扑量子场论的构建具有重要意义,并为理解“球面同伦群”提供了一种潜在的新途径。进一步的三个项目涉及同伦理论、代数K-理论、跨色同伦理论以及Goodwillie演算与无穷范畴稳定化中“粉碎”积的构造之间的关系的新的推广。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Hopkins其他文献
Optimizing the hardness of SLA printed objects by using the neural network and genetic algorithm
利用神经网络和遗传算法优化SLA打印物体的硬度
- DOI:
10.1016/j.promfg.2020.01.016 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
G. Hu;Z. Cao;Michael Hopkins;Conor Hayes;Mark Daly;Haiying Zhou;D. Devine - 通讯作者:
D. Devine
Time to Next Available Appointment as an Access to Care Metric.
下次可用预约的时间作为获得护理的指标。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:2.3
- 作者:
S. Brar;Michael Hopkins;David Margolius - 通讯作者:
David Margolius
Short Communication Neural correlates of bimodal speech and gesture comprehension q
双模态言语和手势理解的短交流神经相关性
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
S. Kelly;Corinne Kravitz;Michael Hopkins - 通讯作者:
Michael Hopkins
Thyroid function post laryngectomy and hemithyroidectomy - do all laryngectomy patients need thyroid replacement?
- DOI:
10.1016/j.ejso.2020.11.165 - 发表时间:
2021-02-01 - 期刊:
- 影响因子:
- 作者:
Lucy Li;Michael Hopkins;Iain Nixon;Ashley Hay - 通讯作者:
Ashley Hay
Behavioral Learning in a Cognitive Neuromorphic Robot: An Behavioral Learning in a Cognitive Neuromorphic Robot: An Integrative Approach Integrative Approach
认知神经形态机器人中的行为学习:认知神经形态机器人中的行为学习:一种综合方法 综合方法
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Ieee Alexander D. Rast Member;Samantha V. Adams;Simon Davidson;Sergio Davies;Michael Hopkins;Andrew Rowley;A. B. Stokes;Thomas Wennekers;Fellow Ieee Steve Furber;Angelo Cangelosi;S. Rast;M. Davies;A. Hopkins;Rowley - 通讯作者:
Rowley
Michael Hopkins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Hopkins', 18)}}的其他基金
Applications of homotopy theory to algebraic geometry and physics
同伦理论在代数几何和物理学中的应用
- 批准号:
2305373 - 财政年份:2023
- 资助金额:
$ 85.68万 - 项目类别:
Standard Grant
Optimising Covid-19 Testing System (OCTS)
优化 Covid-19 测试系统 (OCTS)
- 批准号:
ES/W00156X/1 - 财政年份:2021
- 资助金额:
$ 85.68万 - 项目类别:
Research Grant
Covid-19 international comparative research and rapid knowledge exchange hub on diagnostic testing systems
Covid-19诊断测试系统国际比较研究和快速知识交流中心
- 批准号:
ES/V004441/1 - 财政年份:2020
- 资助金额:
$ 85.68万 - 项目类别:
Research Grant
New Directions in Homology of Moduli Spaces
模空间同调的新方向
- 批准号:
1803766 - 财政年份:2018
- 资助金额:
$ 85.68万 - 项目类别:
Standard Grant
Porphyrin monolayers as platforms for the supramolecular organization of fullerenes at interfaces
卟啉单层作为富勒烯界面超分子组织的平台
- 批准号:
1611033 - 财政年份:2016
- 资助金额:
$ 85.68万 - 项目类别:
Standard Grant
Foresight Study on European Stakeholder Appraisal of Diagnostics to Manage Anti-Microbial Resistance
欧洲利益相关者对抗菌药物耐药性管理诊断评估的前瞻研究
- 批准号:
MR/N014316/1 - 财政年份:2016
- 资助金额:
$ 85.68万 - 项目类别:
Research Grant
Novel method for tracking the translation processes that lead to impact from Biomedical research - A pilot study
用于跟踪生物医学研究影响的翻译过程的新方法 - 一项试点研究
- 批准号:
MR/M00838X/1 - 财政年份:2014
- 资助金额:
$ 85.68万 - 项目类别:
Research Grant
FRG: Collaborative proposal: In and Around Theory X
FRG:合作提案:理论 X 的内部和周围
- 批准号:
1158983 - 财政年份:2012
- 资助金额:
$ 85.68万 - 项目类别:
Standard Grant
Collaborative Research: Homotopy Theory: Applications and New Dimensions
合作研究:同伦理论:应用和新维度
- 批准号:
0906194 - 财政年份:2009
- 资助金额:
$ 85.68万 - 项目类别:
Continuing Grant
相似国自然基金
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Algebraic Structures in String Topology
弦拓扑中的代数结构
- 批准号:
2405405 - 财政年份:2024
- 资助金额:
$ 85.68万 - 项目类别:
Standard Grant
Conference: Algebraic Structures in Topology 2024
会议:拓扑中的代数结构 2024
- 批准号:
2348092 - 财政年份:2024
- 资助金额:
$ 85.68万 - 项目类别:
Standard Grant
Pseudorandom numbers and algebraic studies on related mathematical structures
伪随机数及相关数学结构的代数研究
- 批准号:
23K03033 - 财政年份:2023
- 资助金额:
$ 85.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic Structures in Weakly Supervised Disentangled Representation Learning
弱监督解缠表示学习中的代数结构
- 批准号:
22KJ0880 - 财政年份:2023
- 资助金额:
$ 85.68万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Algebraic Structures and the Arithmetic of Fields
代数结构和域的算术
- 批准号:
2401018 - 财政年份:2023
- 资助金额:
$ 85.68万 - 项目类别:
Continuing Grant
Applications of Higher Algebraic Structures in Noncommutative Geometry
高等代数结构在非交换几何中的应用
- 批准号:
2302447 - 财政年份:2023
- 资助金额:
$ 85.68万 - 项目类别:
Continuing Grant
Nonlinear systems: algebraic structures and integrability
非线性系统:代数结构和可积性
- 批准号:
EP/X018784/1 - 财政年份:2023
- 资助金额:
$ 85.68万 - 项目类别:
Research Grant
Shifted Symplectic & Poisson Structures and their Quantisations in the context of Derived Algebraic Geometry
移辛
- 批准号:
2747173 - 财政年份:2022
- 资助金额:
$ 85.68万 - 项目类别:
Studentship
Application of noncommutative algebraic structures to cryptology
非交换代数结构在密码学中的应用
- 批准号:
22K03397 - 财政年份:2022
- 资助金额:
$ 85.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
- 批准号:
2152235 - 财政年份:2022
- 资助金额:
$ 85.68万 - 项目类别:
Standard Grant














{{item.name}}会员




