New Directions in Homology of Moduli Spaces
模空间同调的新方向
基本信息
- 批准号:1803766
- 负责人:
- 金额:$ 15.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research conducted under this grant concerns the study of moduli spaces of algebraic and geometric objects, and in particular those of manifolds. Manifolds are mathematical objects generalizing the three-dimensional space in which we live, and appear throughout mathematics and science. Locally they look like ordinary space, though possibly of a different dimension, but globally their shape may be complicated. As a consequence, they can have interesting symmetries or can be deformed in interesting ways. It is a classical problem to understand which symmetries and deformation exist, and how to distinguish these in a computationally effective manner. Moduli spaces provide a geometric method to access this information, and we will contribute to the progress of science by furthering their study.To understand of the topology of moduli spaces of algebraic and geometric interest, and in particular their homology, the Principal Investigator will apply the techniques of homotopy theory and higher algebra. Firstly, the PI shall use the existence of additional higher-algebraic structures on moduli spaces. The PI will then use higher-algebraic cellular structures to reinterpret homological stability results and obtain meta-stable results about those homology groups for which homological stability does not hold. Secondly, the PI will destabilize recent stable results in manifold theory by comparing closely related moduli spaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
根据这项补助金进行的研究涉及代数和几何对象的模空间的研究,特别是流形。流形是数学对象,概括了我们生活的三维空间,并出现在数学和科学中。在局部,它们看起来像普通的空间,虽然可能有不同的维度,但从全局来看,它们的形状可能很复杂。因此,它们可以具有有趣的对称性,或者可以以有趣的方式变形。理解存在哪些对称性和变形,以及如何以计算有效的方式区分这些对称性和变形是一个经典问题。模空间提供了一种几何方法来获取这些信息,我们将通过进一步的研究来促进科学的进步。为了理解代数和几何兴趣的模空间的拓扑结构,特别是它们的同调,首席研究员将应用同伦理论和高等代数的技术。首先,PI将使用模空间上的附加高等代数结构的存在性。PI然后将使用更高的代数细胞结构来重新解释同调稳定性结果,并获得关于那些同调稳定性不成立的同调群的亚稳定结果。其次,PI将通过比较密切相关的模空间来破坏流形理论中最近的稳定结果。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The cohomology of Torelli groups is algebraic
Torelli 群的上同调是代数的
- DOI:10.1017/fms.2020.41
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Kupers, Alexander;Randal-Williams, Oscar
- 通讯作者:Randal-Williams, Oscar
Intersection forms of spin 4-manifolds and the pin(2)-equivariant Mahowald invariant
自旋 4 流形与 pin(2) 等变 Mahowald 不变量的交集形式
- DOI:10.1090/cams/4
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Hopkins, Michael;Lin, Jianfeng;Shi, XiaoLin Danny;Xu, Zhouli
- 通讯作者:Xu, Zhouli
E_2-cells and mapping class groups
E_2-细胞和映射类组
- DOI:10.1007/s10240-019-00107-8
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Galatius, Søren;Kupers, Alexander;Randal-Williams, Oscar
- 通讯作者:Randal-Williams, Oscar
Characteristic classes of bundles of K3 manifolds and the Nielsen realization problem
K3 流形束的特征类和 Nielsen 实现问题
- DOI:10.2140/tunis.2021.3.75
- 发表时间:2021
- 期刊:
- 影响因子:0.9
- 作者:Giansiracusa, Jeffrey;Kupers, Alexander;Tshishiku, Bena
- 通讯作者:Tshishiku, Bena
ON THE COHOMOLOGY OF TORELLI GROUPS
论托雷利群的上同调
- DOI:10.1017/fmp.2020.5
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:KUPERS, ALEXANDER;RANDAL-WILLIAMS, OSCAR
- 通讯作者:RANDAL-WILLIAMS, OSCAR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Hopkins其他文献
Optimizing the hardness of SLA printed objects by using the neural network and genetic algorithm
利用神经网络和遗传算法优化SLA打印物体的硬度
- DOI:
10.1016/j.promfg.2020.01.016 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
G. Hu;Z. Cao;Michael Hopkins;Conor Hayes;Mark Daly;Haiying Zhou;D. Devine - 通讯作者:
D. Devine
Time to Next Available Appointment as an Access to Care Metric.
下次可用预约的时间作为获得护理的指标。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:2.3
- 作者:
S. Brar;Michael Hopkins;David Margolius - 通讯作者:
David Margolius
Short Communication Neural correlates of bimodal speech and gesture comprehension q
双模态言语和手势理解的短交流神经相关性
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
S. Kelly;Corinne Kravitz;Michael Hopkins - 通讯作者:
Michael Hopkins
Thyroid function post laryngectomy and hemithyroidectomy - do all laryngectomy patients need thyroid replacement?
- DOI:
10.1016/j.ejso.2020.11.165 - 发表时间:
2021-02-01 - 期刊:
- 影响因子:
- 作者:
Lucy Li;Michael Hopkins;Iain Nixon;Ashley Hay - 通讯作者:
Ashley Hay
Behavioral Learning in a Cognitive Neuromorphic Robot: An Behavioral Learning in a Cognitive Neuromorphic Robot: An Integrative Approach Integrative Approach
认知神经形态机器人中的行为学习:认知神经形态机器人中的行为学习:一种综合方法 综合方法
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Ieee Alexander D. Rast Member;Samantha V. Adams;Simon Davidson;Sergio Davies;Michael Hopkins;Andrew Rowley;A. B. Stokes;Thomas Wennekers;Fellow Ieee Steve Furber;Angelo Cangelosi;S. Rast;M. Davies;A. Hopkins;Rowley - 通讯作者:
Rowley
Michael Hopkins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Hopkins', 18)}}的其他基金
Applications of homotopy theory to algebraic geometry and physics
同伦理论在代数几何和物理学中的应用
- 批准号:
2305373 - 财政年份:2023
- 资助金额:
$ 15.58万 - 项目类别:
Standard Grant
Optimising Covid-19 Testing System (OCTS)
优化 Covid-19 测试系统 (OCTS)
- 批准号:
ES/W00156X/1 - 财政年份:2021
- 资助金额:
$ 15.58万 - 项目类别:
Research Grant
Covid-19 international comparative research and rapid knowledge exchange hub on diagnostic testing systems
Covid-19诊断测试系统国际比较研究和快速知识交流中心
- 批准号:
ES/V004441/1 - 财政年份:2020
- 资助金额:
$ 15.58万 - 项目类别:
Research Grant
Porphyrin monolayers as platforms for the supramolecular organization of fullerenes at interfaces
卟啉单层作为富勒烯界面超分子组织的平台
- 批准号:
1611033 - 财政年份:2016
- 资助金额:
$ 15.58万 - 项目类别:
Standard Grant
Foresight Study on European Stakeholder Appraisal of Diagnostics to Manage Anti-Microbial Resistance
欧洲利益相关者对抗菌药物耐药性管理诊断评估的前瞻研究
- 批准号:
MR/N014316/1 - 财政年份:2016
- 资助金额:
$ 15.58万 - 项目类别:
Research Grant
New Algebraic Structures in Topology
拓扑中的新代数结构
- 批准号:
1510417 - 财政年份:2015
- 资助金额:
$ 15.58万 - 项目类别:
Continuing Grant
Novel method for tracking the translation processes that lead to impact from Biomedical research - A pilot study
用于跟踪生物医学研究影响的翻译过程的新方法 - 一项试点研究
- 批准号:
MR/M00838X/1 - 财政年份:2014
- 资助金额:
$ 15.58万 - 项目类别:
Research Grant
FRG: Collaborative proposal: In and Around Theory X
FRG:合作提案:理论 X 的内部和周围
- 批准号:
1158983 - 财政年份:2012
- 资助金额:
$ 15.58万 - 项目类别:
Standard Grant
Collaborative Research: Homotopy Theory: Applications and New Dimensions
合作研究:同伦理论:应用和新维度
- 批准号:
0906194 - 财政年份:2009
- 资助金额:
$ 15.58万 - 项目类别:
Continuing Grant
相似海外基金
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
- 批准号:
EP/Z000688/1 - 财政年份:2024
- 资助金额:
$ 15.58万 - 项目类别:
Research Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 15.58万 - 项目类别:
Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306378 - 财政年份:2024
- 资助金额:
$ 15.58万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342245 - 财政年份:2024
- 资助金额:
$ 15.58万 - 项目类别:
Standard Grant
Manchester Metropolitan University and Future Directions CIC KTP 23_24 R3
曼彻斯特城市大学和未来方向 CIC KTP 23_24 R3
- 批准号:
10083223 - 财政年份:2024
- 资助金额:
$ 15.58万 - 项目类别:
Knowledge Transfer Network
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306379 - 财政年份:2024
- 资助金额:
$ 15.58万 - 项目类别:
Standard Grant
Conference: Future Directions for Mathematics Education Research, Policy, and Practice
会议:数学教育研究、政策和实践的未来方向
- 批准号:
2342550 - 财政年份:2024
- 资助金额:
$ 15.58万 - 项目类别:
Standard Grant
CAREER: New directions in the study of zeros and moments of L-functions
职业:L 函数零点和矩研究的新方向
- 批准号:
2339274 - 财政年份:2024
- 资助金额:
$ 15.58万 - 项目类别:
Continuing Grant
Participant Support for Biomechanists Outlining New Directions Workshop (USA and Italy: BOND); Naples, Italy; 24-27 September 2023
生物力学专家概述新方向研讨会的参与者支持(美国和意大利:BOND);
- 批准号:
2314385 - 财政年份:2023
- 资助金额:
$ 15.58万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
- 批准号:
2327010 - 财政年份:2023
- 资助金额:
$ 15.58万 - 项目类别:
Standard Grant