FRG: Collaborative Research: Kinetic Description of Multiscale Phenomena: Modeling, Theory and Computation
FRG:协作研究:多尺度现象的动力学描述:建模、理论和计算
基本信息
- 批准号:0757450
- 负责人:
- 金额:$ 13.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Kinetic equations play a central role in many areas of mathematical physics, from micro- and nano-physics to continuum mechanics. They are an indispensable tool in the mathematical description of applications in physical and social sciences, from semi-conductors, polymers and plasma to traffic networking and swarming. The ultimate goal of this proposal is to develop novel analytical and numerical methods based on kinetic descriptions of complex phenomena with multiple scales and with a wide range of applications. The objective is to achieve a better understanding of problems which are in the forefront of current research and to contribute to the solution of long-standing problems by synergetic collaboration of theory, modeling and numerics. To this end, this Focus Research Group (FRG) will provide a platform, led by leading researchers from Universities of Maryland, Brown, Iowa State, Wisconsin-Madison, Arizona State, Austin-Texas and Toulouse, France, who will merge their expertise in the construction, analysis and implementation of kinetic descriptions for a selected suite of problems with crossing scales from quantum and micro scales to the macro scales. Topics to be discussed include kinetic descriptions of microscopic and quantum phenomena, and kinetic descriptions of macroscopic phenomena. As a recent novel example for the kinetic methodology we will use kinetic descriptions to study hyperbolic flows for complex supply chains. The theoretical and modeling aspects of this research program, on both microscopic and macroscopic scales, will be integrated with kinetic-based numerical methods for capturing ``smaller scales phenomena". The rationale behind this proposal is a timely effort to address several important issues in modern applied mathematics. Kinetic theories are not new. Yet, there have been many major developments in kinetic modeling, kinetic theories and related numerical methods, with the potential for a considerable impact on emerging new fields in physical and social sciences. The proposed effort will significantly strengthen the leading role that the US researchers can play in pursuing cutting-edge research and training a new generation of applied mathematicians in this important field. We expect this project to contribute to the development of scientific workforce by advanced training for doctoral and postdoctoral researchers and by providing a platform for interdisciplinary interactions with researchers from related disciplines. Internal and external interactions will be maintained through synergetic collaborations which will come to fruition during the three annual workshops to be held in Maryland (Year 1), France and Brown (Year 2), and Wisconsin (Year 3). International meetings will be held as part of a series of interdisciplinary workshops organized by the Center for Scientific Computation and Mathematical Modeling (CSCAMM) at the University of Maryland. Project researchers will collaborate with the DOE Center for Multiscale Plasma Dynamics in CSCAMM, the DOE Ames Laboratory at Iowa State University, and the Institute for Computational Engineering and Sciences (ICES) at UT Austin.
动力学方程在数学物理的许多领域中起着核心作用,从微观和纳米物理到连续介质力学。它们是物理和社会科学中应用的数学描述中不可或缺的工具,从半导体,聚合物和等离子体到交通网络和群集。这项建议的最终目标是开发新的分析和数值方法的动力学描述的复杂现象的基础上,多尺度和广泛的应用。目标是更好地理解当前研究的前沿问题,并通过理论,建模和数值的协同合作为解决长期存在的问题做出贡献。为此,这个焦点研究小组(FRG)将提供一个平台,由来自马里兰州,布朗,爱荷华州,威斯康星州麦迪逊,亚利桑那州,奥斯汀-得克萨斯州和图卢兹,法国,谁将合并他们的专业知识,在建设,分析和实施动力学描述的一套选定的问题与交叉尺度从量子和微观尺度到宏观尺度的大学领导。讨论的主题包括微观和量子现象的动力学描述,以及宏观现象的动力学描述。作为动力学方法的一个新的例子,我们将使用动力学描述来研究复杂供应链的双曲流。这项研究计划的理论和建模方面,在微观和宏观尺度上,将与基于动力学的数值方法相结合,以捕捉“较小尺度的现象”。这一建议背后的理由是及时努力解决现代应用数学中的几个重要问题。动力学理论并不新鲜。然而,动力学建模,动力学理论和相关的数值方法已经有了许多重大的发展,对物理和社会科学的新兴领域产生了相当大的影响。拟议的努力将大大加强美国研究人员在追求尖端研究和培养这一重要领域的新一代应用数学家方面可以发挥的主导作用。我们希望该项目通过对博士和博士后研究人员的高级培训,并通过提供与相关学科研究人员进行跨学科互动的平台,为科学劳动力的发展做出贡献。内部和外部的互动将通过协同合作,这将在三个年度研讨会期间将在马里兰州(第一年),法国和布朗(第二年),和威斯康星州(第三年)举行取得成果。国际会议将作为马里兰州大学科学计算和数学建模中心组织的一系列跨学科讲习班的一部分举行。项目研究人员将与CSCAMM的DOE多尺度等离子体动力学中心、爱荷华州州立大学的DOE艾姆斯实验室以及UT奥斯汀的计算工程与科学研究所(ICES)合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irene Gamba其他文献
DSMC versus WENO-BTE: A double gate MOSFET example
- DOI:
10.1007/s10825-006-0035-4 - 发表时间:
2006-12-09 - 期刊:
- 影响因子:2.500
- 作者:
Maria José Cáceres;José Antonio Carrillo;Irene Gamba;Armando Majorana;Chi-Wang Shu - 通讯作者:
Chi-Wang Shu
Irene Gamba的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Irene Gamba', 18)}}的其他基金
Collisional Kinetic Transport: Analysis and Numerical Methods
碰撞动力学输运:分析和数值方法
- 批准号:
2009736 - 财政年份:2020
- 资助金额:
$ 13.13万 - 项目类别:
Standard Grant
Non-local Kinetic Collisional Transport: Analysis and Numerical Methods
非局部动力学碰撞传输:分析和数值方法
- 批准号:
1715515 - 财政年份:2017
- 资助金额:
$ 13.13万 - 项目类别:
Standard Grant
Pan-American Conference on Differential Equations and Non-linear Analysis
泛美微分方程和非线性分析会议
- 批准号:
1446125 - 财政年份:2015
- 资助金额:
$ 13.13万 - 项目类别:
Standard Grant
The Kinetics of Interacting Particle Systems: Theory and Numerical Methods
相互作用粒子系统的动力学:理论和数值方法
- 批准号:
1413064 - 财政年份:2014
- 资助金额:
$ 13.13万 - 项目类别:
Continuing Grant
Collaborative Research: RNMS: Kinetic Description of Emerging Challenges in Multiscale Problems of Natural Sciences
合作研究:RNMS:自然科学多尺度问题中新挑战的动力学描述
- 批准号:
1107465 - 财政年份:2012
- 资助金额:
$ 13.13万 - 项目类别:
Continuing Grant
Accurate high performance computing for nonlinear collisional kinetic theory
非线性碰撞动力学理论的精确高性能计算
- 批准号:
1217154 - 财政年份:2012
- 资助金额:
$ 13.13万 - 项目类别:
Standard Grant
Kinetic transport and dynamics in complex interacting systems: analysis and simulations
复杂相互作用系统中的动能传输和动力学:分析和模拟
- 批准号:
1109625 - 财政年份:2011
- 资助金额:
$ 13.13万 - 项目类别:
Standard Grant
Statistical transport of complex particle systems
复杂粒子系统的统计传输
- 批准号:
0807712 - 财政年份:2008
- 资助金额:
$ 13.13万 - 项目类别:
Standard Grant
EMSW21-RTG - Program in Applied and Computational Analysis
EMSW21-RTG - 应用和计算分析程序
- 批准号:
0636586 - 财政年份:2007
- 资助金额:
$ 13.13万 - 项目类别:
Continuing Grant
Non-Equilibrium Problems in Collisional Kinetic and Quantum Theory
碰撞动力学和量子理论中的非平衡问题
- 批准号:
0507038 - 财政年份:2005
- 资助金额:
$ 13.13万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 13.13万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 13.13万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 13.13万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 13.13万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 13.13万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 13.13万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 13.13万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 13.13万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 13.13万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 13.13万 - 项目类别:
Continuing Grant