Collisional Kinetic Transport: Analysis and Numerical Methods
碰撞动力学输运:分析和数值方法
基本信息
- 批准号:2009736
- 负责人:
- 金额:$ 34.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The overall objective of this research is to develop accurate analytical modeling and simulation for a series of diverse phenomena of fundamental scientific interest, at the edge of various technological developments such as plasma evolution in fusion models, modeling of very cold gases in the intermediate transition to form Bose-Einstein condensation, hot-electron transport in semiconductor devices, nanostructures for solar generation of hydrogen, and reacting and polyatomic molecular mixtures associated with aerospace dynamics such as those in re-entry problems. Modeling and simulation will be based on data obtained by accurate crystallographic calculations, considering atomistic corrections, and the presence of rough media. Some of the techniques that will be developed are also pertinent to exciting new applications to non-linear dynamics modeling in bio-social sciences, such as modeling of self-organized flows where "particle" swarms, like birds or fish, couple to fluid dynamics, emerging consensus in population dynamics, multi-agent information transfer and social information dynamics in Internet, to name a few. Most significantly, this project provides research training opportunities for graduate students that prepare them to a job market that ranges from academia, to national labs, and industry.These research goals comprise a broad program in the development of analytical and numerical tools associated with statistical transport equations and systems at the core of applied mathematics in probability, statistics applied to chemistry, physics as well as to biological and social dynamics as well. They concern the modeling of complex interactions systems yielding kinetic frameworks associated to Markovian processes of birth-death dynamics. Such statistical approaches lead to nonlinear integro-differential systems of equations of collisional classical or quantum Boltzmann or Smolukowski type. Computational schemes will be fully designed and analyzed to secure consistency, stability, error estimates control, and convergence rates to equilibrium. Many of these models appear in the collisional theory of semi-classical transport for short- and long-range particle interactions models that describe self-consistent phenomena at nano and meso-scales. New tools from non-linear analysis as well as new computational strategies will be developed to address long-time behavior, stability, and decay rates to stationary modes, as well as qualitative behavior of numerical solutions and optimal computational strategies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究的总体目标是为一系列具有根本科学意义的各种现象开发准确的分析建模和模拟,这些现象处于各种技术发展的边缘,例如聚变模型中的等离子体演化,中间过渡中非常冷的气体的建模以形成玻色-爱因斯坦凝聚,半导体器件中的热电子传输,太阳能制氢的纳米结构,以及与航空航天动力学有关的反应和多原子分子混合物,如再入问题中的那些。建模和模拟将基于通过精确的晶体学计算获得的数据,考虑原子校正和粗糙介质的存在。一些将被开发的技术也是相关的令人兴奋的新的应用程序在生物社会科学的非线性动力学建模,如自组织流的建模“粒子”群,如鸟类或鱼类,耦合到流体动力学,新兴的共识,在人口动态,多代理信息传输和社会信息动态在互联网上,仅举几例。最重要的是,该项目为研究生提供了研究培训机会,使他们为从学术界到国家实验室和工业界的就业市场做好准备。这些研究目标包括一个广泛的计划,开发与概率统计输运方程和系统相关的分析和数值工具,应用于化学的统计,物理学以及生物学和社会动力学。它们涉及复杂的相互作用系统的建模,产生与马尔可夫过程的生灭动力学相关的动力学框架。这样的统计方法导致碰撞经典或量子玻尔兹曼或Smolukowski型方程的非线性积分微分系统。计算方案将被充分设计和分析,以确保一致性,稳定性,误差估计控制和收敛速度平衡。许多这些模型出现在碰撞理论的半经典运输的短期和长期的粒子相互作用模型,描述自洽现象在纳米和介观尺度。 将开发非线性分析的新工具以及新的计算策略,以解决长期行为、稳定性和稳态模式的衰减率,以及数值解的定性行为和最佳计算策略。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Global well-posedness of a binary–ternary Boltzmann equation
- DOI:10.4171/aihpc/9
- 发表时间:2019-10
- 期刊:
- 影响因子:0
- 作者:Ioakeim Ampatzoglou;I. Gamba;N. Pavlović;M. Taskovic
- 通讯作者:Ioakeim Ampatzoglou;I. Gamba;N. Pavlović;M. Taskovic
Reconstructing the thermal phonon transmission coefficient at solid interfaces in the phonon transport equations
重建声子传输方程中固体界面处的热声子传输系数
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:1.9
- 作者:I.M.Gamba, Q. Li
- 通讯作者:I.M.Gamba, Q. Li
A conservative Galerkin solver for the quasilinear diffusion model in magnetized plasmas
磁化等离子体中拟线性扩散模型的保守伽辽金求解器
- DOI:10.1016/j.jcp.2023.112220
- 发表时间:2023
- 期刊:
- 影响因子:4.1
- 作者:Huang, Kun;Abdelmalik, Michael;Breizman, Boris;Gamba, Irene M.
- 通讯作者:Gamba, Irene M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irene Gamba其他文献
DSMC versus WENO-BTE: A double gate MOSFET example
- DOI:
10.1007/s10825-006-0035-4 - 发表时间:
2006-12-09 - 期刊:
- 影响因子:2.500
- 作者:
Maria José Cáceres;José Antonio Carrillo;Irene Gamba;Armando Majorana;Chi-Wang Shu - 通讯作者:
Chi-Wang Shu
Irene Gamba的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Irene Gamba', 18)}}的其他基金
Non-local Kinetic Collisional Transport: Analysis and Numerical Methods
非局部动力学碰撞传输:分析和数值方法
- 批准号:
1715515 - 财政年份:2017
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Pan-American Conference on Differential Equations and Non-linear Analysis
泛美微分方程和非线性分析会议
- 批准号:
1446125 - 财政年份:2015
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
The Kinetics of Interacting Particle Systems: Theory and Numerical Methods
相互作用粒子系统的动力学:理论和数值方法
- 批准号:
1413064 - 财政年份:2014
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Collaborative Research: RNMS: Kinetic Description of Emerging Challenges in Multiscale Problems of Natural Sciences
合作研究:RNMS:自然科学多尺度问题中新挑战的动力学描述
- 批准号:
1107465 - 财政年份:2012
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Accurate high performance computing for nonlinear collisional kinetic theory
非线性碰撞动力学理论的精确高性能计算
- 批准号:
1217154 - 财政年份:2012
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Kinetic transport and dynamics in complex interacting systems: analysis and simulations
复杂相互作用系统中的动能传输和动力学:分析和模拟
- 批准号:
1109625 - 财政年份:2011
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Kinetic Description of Multiscale Phenomena: Modeling, Theory and Computation
FRG:协作研究:多尺度现象的动力学描述:建模、理论和计算
- 批准号:
0757450 - 财政年份:2008
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Statistical transport of complex particle systems
复杂粒子系统的统计传输
- 批准号:
0807712 - 财政年份:2008
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
EMSW21-RTG - Program in Applied and Computational Analysis
EMSW21-RTG - 应用和计算分析程序
- 批准号:
0636586 - 财政年份:2007
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Non-Equilibrium Problems in Collisional Kinetic and Quantum Theory
碰撞动力学和量子理论中的非平衡问题
- 批准号:
0507038 - 财政年份:2005
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
相似国自然基金
关于Kinetic Cucker-Smale模型及相关耦合模型的适定性研究
- 批准号:12001530
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
带奇性的 Kinetic Cucker-Smale 模型在随机环境中的平均场极限及时间渐近行为研究
- 批准号:11801194
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Kinetic Monte Carlo 模拟薄膜生长机理的研究
- 批准号:10574059
- 批准年份:2005
- 资助金额:12.0 万元
- 项目类别:面上项目
相似海外基金
Optimal Transport Applications to Probability, Machine Learning, and Kinetic Theory
最优运输在概率、机器学习和动力学理论中的应用
- 批准号:
2205937 - 财政年份:2022
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Incorporating molecular and impurity effects into kinetic parallel electron transport modelling of scrape-off layer detachment
将分子和杂质效应纳入刮除层分离的动力学并行电子传输模型中
- 批准号:
2277366 - 财政年份:2019
- 资助金额:
$ 34.5万 - 项目类别:
Studentship
High Order Methods for Kinetic Transport Models
动力学输运模型的高阶方法
- 批准号:
1913072 - 财政年份:2019
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Regional and kinetic changes in gut permeability and the mechanisms of transport across the piglet gut wall
肠道通透性的区域和动力学变化以及穿过仔猪肠壁的转运机制
- 批准号:
RGPIN-2015-06437 - 财政年份:2019
- 资助金额:
$ 34.5万 - 项目类别:
Discovery Grants Program - Individual
Multiscale computational methods in kinetic theory and optimal transport
动力学理论和最优输运中的多尺度计算方法
- 批准号:
1903420 - 财政年份:2018
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Regional and kinetic changes in gut permeability and the mechanisms of transport across the piglet gut wall
肠道通透性的区域和动力学变化以及穿过仔猪肠壁的转运机制
- 批准号:
RGPIN-2015-06437 - 财政年份:2018
- 资助金额:
$ 34.5万 - 项目类别:
Discovery Grants Program - Individual
Regional and kinetic changes in gut permeability and the mechanisms of transport across the piglet gut wall
肠道通透性的区域和动力学变化以及穿过仔猪肠壁的转运机制
- 批准号:
RGPIN-2015-06437 - 财政年份:2017
- 资助金额:
$ 34.5万 - 项目类别:
Discovery Grants Program - Individual
Non-local Kinetic Collisional Transport: Analysis and Numerical Methods
非局部动力学碰撞传输:分析和数值方法
- 批准号:
1715515 - 财政年份:2017
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Prediction of the transport properties of gaseous alkane mixtures using the kinetic theory of molecular gases
利用分子气体动力学理论预测气态烷烃混合物的输运特性
- 批准号:
289745381 - 财政年份:2016
- 资助金额:
$ 34.5万 - 项目类别:
Research Grants
Regional and kinetic changes in gut permeability and the mechanisms of transport across the piglet gut wall
肠道通透性的区域和动力学变化以及穿过仔猪肠壁的转运机制
- 批准号:
RGPIN-2015-06437 - 财政年份:2016
- 资助金额:
$ 34.5万 - 项目类别:
Discovery Grants Program - Individual