Accurate high performance computing for nonlinear collisional kinetic theory
非线性碰撞动力学理论的精确高性能计算
基本信息
- 批准号:1217154
- 负责人:
- 金额:$ 16.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-15 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This work will implement, analyze, and benchmark accurate numerical schemes for nonlinear collisional kinetic equations and their extension to high performance computing. Kinetic equations describe physical systems at the mesoscopic level, where there are large numbers of interactions between particles but they are not frequent enough to be described as a continuum. At each point in phase space a nonlinear integral term models the effect of interactions with all of the other particles in the system. This integral is difficult and expensive to evaluate due to the delicate conservation structure of the interactions and its dimensionality, however it has many properties that makes it well-suited for parallel computation. This work seeks to overcome the computational bottleneck of the collisional integral term in kinetic models by adapting a conservative spectral numerical method to massively parallel computer architectures, and will investigate how this scales with increasing computational nodes. The proposed work will further enhance the method by applying high order space and time discretization to the transport terms in the system, which was previously infeasible due to the expense of evaluating the collision term, as well as investigating methods for reducing the complexity of the integration for further efficiency. It will also carefully investigate the order of accuracy of computation with regards to the velocity domain cutoff and quadrature. This work will extend the conservative spectral method to the case of anisotropic in angle collisional models, in particular the grazing collisions (Landau) limit and applications to collisional plasma models. Finally, this work will attempt to extend the ideas of asymptotic-preserving schemes to efficiently compute the collision term in stiff regimes.Many important problems in science can be described at the molecular level as individual particles bouncing around, each with its speed and direction. These particles interact with each other as well as other objects through collisions that exchange energy and momentum, and the average behavior of these interactions can be felt as wind, for example. Kinetic models describe problems where particle density is low enough that collisional effects matter in the dynamics of the problem, but is not so strong that one can simply use the average behavior to describe the evolution. Kinetic models can characterize a wide variety of applications such as design of nano- and micro-scale devices, energy applications in plasma physics such as semiconductors and nuclear fusion, and atmospheric re-entry for spacecraft and satellites. In addition to physical applications, these models can be used for the modeling of biological and social dynamics, such as the dynamics of crowds in confined spaces, or modeling the flocking and herding of animals, which could be of security and environmental interest. This work will develop new simulation tools that are able to leverage high performance computing resources to perform high accuracy simulation of problems that were previously computationally infeasible, which can provide a broader view of kinetic applications.
这项工作将实现,分析和基准精确的数值方案的非线性碰撞动力学方程及其扩展到高性能计算。动力学方程描述了介观层次的物理系统,其中粒子之间存在大量的相互作用,但它们不够频繁,不能被描述为连续体。在相空间中的每个点处,非线性积分项模拟与系统中所有其他粒子的相互作用的效果。由于相互作用及其维数的微妙守恒结构,这种积分很难评估,但它有许多属性,使其非常适合并行计算。这项工作旨在克服动力学模型中的碰撞积分项的计算瓶颈,通过将保守的谱数值方法应用于大规模并行计算机架构,并将研究如何随着计算节点的增加而扩展。所提出的工作将进一步加强该方法,通过应用高阶空间和时间离散化的系统中的运输条款,这是以前不可行的,由于费用的碰撞项,以及调查的方法,以降低复杂性的集成,以进一步提高效率。它还将仔细研究关于速度域截止和求积的计算精度的顺序。这项工作将保守谱方法的情况下,各向异性的角度碰撞模型,特别是掠碰撞(朗道)限制和应用碰撞等离子体模型。最后,本文将尝试扩展渐近保持格式的思想,以有效地计算刚性区域中的碰撞项。科学中的许多重要问题可以在分子水平上描述为单个粒子的反弹,每个粒子都有自己的速度和方向。这些粒子通过碰撞相互作用,交换能量和动量,这些相互作用的平均行为可以被感觉为风。动力学模型描述的问题是,粒子密度足够低,碰撞效应在问题的动力学中很重要,但又没有那么强,以至于人们可以简单地使用平均行为来描述演化。动力学模型可以描述各种各样的应用,如纳米和微米级器件的设计,等离子体物理学中的能源应用,如半导体和核聚变,以及航天器和卫星重返大气层。除了物理应用外,这些模型还可用于生物和社会动态的建模,例如密闭空间中人群的动态,或对动物的群集和放牧进行建模,这可能具有安全性和环境利益。这项工作将开发新的模拟工具,能够利用高性能计算资源对以前计算上不可行的问题进行高精度模拟,这可以提供更广泛的动力学应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irene Gamba其他文献
DSMC versus WENO-BTE: A double gate MOSFET example
- DOI:
10.1007/s10825-006-0035-4 - 发表时间:
2006-12-09 - 期刊:
- 影响因子:2.500
- 作者:
Maria José Cáceres;José Antonio Carrillo;Irene Gamba;Armando Majorana;Chi-Wang Shu - 通讯作者:
Chi-Wang Shu
Irene Gamba的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Irene Gamba', 18)}}的其他基金
Collisional Kinetic Transport: Analysis and Numerical Methods
碰撞动力学输运:分析和数值方法
- 批准号:
2009736 - 财政年份:2020
- 资助金额:
$ 16.77万 - 项目类别:
Standard Grant
Non-local Kinetic Collisional Transport: Analysis and Numerical Methods
非局部动力学碰撞传输:分析和数值方法
- 批准号:
1715515 - 财政年份:2017
- 资助金额:
$ 16.77万 - 项目类别:
Standard Grant
Pan-American Conference on Differential Equations and Non-linear Analysis
泛美微分方程和非线性分析会议
- 批准号:
1446125 - 财政年份:2015
- 资助金额:
$ 16.77万 - 项目类别:
Standard Grant
The Kinetics of Interacting Particle Systems: Theory and Numerical Methods
相互作用粒子系统的动力学:理论和数值方法
- 批准号:
1413064 - 财政年份:2014
- 资助金额:
$ 16.77万 - 项目类别:
Continuing Grant
Collaborative Research: RNMS: Kinetic Description of Emerging Challenges in Multiscale Problems of Natural Sciences
合作研究:RNMS:自然科学多尺度问题中新挑战的动力学描述
- 批准号:
1107465 - 财政年份:2012
- 资助金额:
$ 16.77万 - 项目类别:
Continuing Grant
Kinetic transport and dynamics in complex interacting systems: analysis and simulations
复杂相互作用系统中的动能传输和动力学:分析和模拟
- 批准号:
1109625 - 财政年份:2011
- 资助金额:
$ 16.77万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Kinetic Description of Multiscale Phenomena: Modeling, Theory and Computation
FRG:协作研究:多尺度现象的动力学描述:建模、理论和计算
- 批准号:
0757450 - 财政年份:2008
- 资助金额:
$ 16.77万 - 项目类别:
Standard Grant
Statistical transport of complex particle systems
复杂粒子系统的统计传输
- 批准号:
0807712 - 财政年份:2008
- 资助金额:
$ 16.77万 - 项目类别:
Standard Grant
EMSW21-RTG - Program in Applied and Computational Analysis
EMSW21-RTG - 应用和计算分析程序
- 批准号:
0636586 - 财政年份:2007
- 资助金额:
$ 16.77万 - 项目类别:
Continuing Grant
Non-Equilibrium Problems in Collisional Kinetic and Quantum Theory
碰撞动力学和量子理论中的非平衡问题
- 批准号:
0507038 - 财政年份:2005
- 资助金额:
$ 16.77万 - 项目类别:
Standard Grant
相似国自然基金
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
海洋微藻生物固定燃煤烟气中CO2的性能与机理研究
- 批准号:50806049
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
Web服务质量(QoS)控制的策略、模型及其性能评价研究
- 批准号:60373013
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Accurate and Reliable Diagnostics for Injured Children: Machine Learning for Ultrasound
为受伤儿童提供准确可靠的诊断:超声机器学习
- 批准号:
10572582 - 财政年份:2023
- 资助金额:
$ 16.77万 - 项目类别:
A next-generation extendable simulation environment for affordable, accurate, and efficient free energy simulations
下一代可扩展模拟环境,可实现经济、准确且高效的自由能源模拟
- 批准号:
10638121 - 财政年份:2023
- 资助金额:
$ 16.77万 - 项目类别:
Phylogenetic and computational methods for accurate and efficient analyses of large-scale metagenomics datasets
用于准确有效分析大规模宏基因组数据集的系统发育和计算方法
- 批准号:
10542443 - 财政年份:2022
- 资助金额:
$ 16.77万 - 项目类别:
Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
- 批准号:
2155096 - 财政年份:2022
- 资助金额:
$ 16.77万 - 项目类别:
Standard Grant
Phylogenetic and computational methods for accurate and efficient analyses of large-scale metagenomics datasets
用于准确有效分析大规模宏基因组数据集的系统发育和计算方法
- 批准号:
10350895 - 财政年份:2022
- 资助金额:
$ 16.77万 - 项目类别:
Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
- 批准号:
2155097 - 财政年份:2022
- 资助金额:
$ 16.77万 - 项目类别:
Standard Grant
A Fast, Accurate and Cloud-based Data Processing Pipeline for High-Density, High-Site-Count Electrophysiology
用于高密度、高位点计数电生理学的快速、准确且基于云的数据处理管道
- 批准号:
9905557 - 财政年份:2018
- 资助金额:
$ 16.77万 - 项目类别:
Accurate modeling of multiphase flow in heterogeneous reservoir with complex wellbore using high performance computing (HPC)
利用高性能计算 (HPC) 对复杂井眼非均质油藏多相流进行精确建模
- 批准号:
239116-2011 - 财政年份:2015
- 资助金额:
$ 16.77万 - 项目类别:
Discovery Grants Program - Individual
Accurate modeling of multiphase flow in heterogeneous reservoir with complex wellbore using high performance computing (HPC)
利用高性能计算 (HPC) 对复杂井眼非均质油藏多相流进行精确建模
- 批准号:
239116-2011 - 财政年份:2014
- 资助金额:
$ 16.77万 - 项目类别:
Discovery Grants Program - Individual
Accurate modeling of multiphase flow in heterogeneous reservoir with complex wellbore using high performance computing (HPC)
利用高性能计算 (HPC) 对复杂井眼非均质油藏多相流进行精确建模
- 批准号:
239116-2011 - 财政年份:2013
- 资助金额:
$ 16.77万 - 项目类别:
Discovery Grants Program - Individual