Pilot: Leveraging Human Creativity with Machine Discovery

试点:通过机器发现利用人类创造力

基本信息

  • 批准号:
    0757479
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-06-01 至 2011-05-31
  • 项目状态:
    已结题

项目摘要

A challenge in machine learning is to devise methods that allow incorporating human insight into the automated learning process. Current learning methods employ representations that make it difficult to encode simplification and specific examples, and learning is based on random exploration that is difficult to direct. NEAT is a learning system where the learned decision policy is represented in neural networks and learned through evolutionary optimization, i.e. genetic algorithms. NEAT evolves network structure as well as weights, which makes it possible in principle to incorporate human guidance in three ways: (1) building a gradually more complex network structure through shaping from simple to more complex tasks, (2) training networks with examples of human behavior, and (3) converting human-designed rules into network structures. These techniques will be developed and evaluated in the domain of designing complex behaviors for autonomous agents in the NERO 3D simulation environment. In a series of human subject experiments, the solutions designed through human-guided neuroevolution will be compared to those designed by human engineers and to those discovered by neuroevolution alone, verifying that (a) the human-guided approach results in better solutions, and (b) those solutions are more creative. The result of this project is a machine learning approach will allow engineers to generate creative designs to many real-world sequential decision problems. Applications of this approach will lead to safer and more efficient vehicle, traffic, and robotic control, improved process and manufacturing optimization, and more efficient computer and communication systems. It will also make the next generation of video games possible, with characters that exhibit realistic and adaptive behaviors; such technology should lead to more effective educational and training games in the future.
机器学习的一个挑战是设计出一种方法,允许将人类的洞察力融入自动学习过程。目前的学习方法采用的表示方法很难对简化和具体示例进行编码,并且学习是基于难以指导的随机探索。NEAT是一个学习系统,其中学习的决策策略在神经网络中表示,并通过进化优化(即遗传算法)学习。NEAT进化了网络结构和权重,原则上可以通过三种方式引入人类指导:(1)通过从简单到更复杂的任务构建逐渐复杂的网络结构,(2)用人类行为的例子训练网络,(3)将人类设计的规则转换为网络结构。这些技术将在NERO 3D仿真环境中为自主代理设计复杂行为的领域中进行开发和评估。在一系列人类实验中,通过人类指导的神经进化设计的解决方案将与人类工程师设计的解决方案以及仅通过神经进化发现的解决方案进行比较,以验证(a)人类指导的方法产生更好的解决方案,(B)这些解决方案更具创造性。该项目的结果是机器学习方法将允许工程师为许多现实世界的顺序决策问题生成创造性的设计。这种方法的应用将导致更安全和更有效的车辆,交通和机器人控制,改进的过程和制造优化,以及更有效的计算机和通信系统。它还将使下一代视频游戏成为可能,其角色表现出逼真和适应性的行为;这种技术应该会在未来带来更有效的教育和培训游戏。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Risto Miikkulainen其他文献

Holdout Evaluation
坚持评估
  • DOI:
    10.1007/978-0-387-30164-8_369
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Antal van den Bosch;B. Hengst;J. Lloyd;Risto Miikkulainen;Hendrik Blockeel
  • 通讯作者:
    Hendrik Blockeel
MARLEDA: Effective distribution estimation through Markov random fields
  • DOI:
    10.1016/j.tcs.2015.07.049
  • 发表时间:
    2016-06-20
  • 期刊:
  • 影响因子:
  • 作者:
    Matthew Alden;Risto Miikkulainen
  • 通讯作者:
    Risto Miikkulainen
Evolutionary Supervised Machine Learning
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Risto Miikkulainen
  • 通讯作者:
    Risto Miikkulainen
Extracting the dynamics of the Hodgkin-Huxley model using recurrent neural networks
  • DOI:
    10.1186/1471-2202-8-s2-p100
  • 发表时间:
    2007-07-06
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Sari Andoni;Manish Saggar;Tekin Meriçli;Risto Miikkulainen
  • 通讯作者:
    Risto Miikkulainen
Modeling self-organizing tri-chromatic color selective regions in primary visual cortex
  • DOI:
    10.1186/1471-2202-8-s2-s24
  • 发表时间:
    2007-07-06
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Judah De Paula;Jim Bednar;Risto Miikkulainen
  • 通讯作者:
    Risto Miikkulainen

Risto Miikkulainen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Risto Miikkulainen', 18)}}的其他基金

Collaborative Research: MOD and TLS: A Predictive Simulation Model of Competitive Dynamics in Innovation
合作研究:MOD 和 TLS:创新竞争动态的预测模拟模型
  • 批准号:
    0914796
  • 财政年份:
    2009
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RI: Small: Learning Strategic Behavior in Sequential Decision Tasks
RI:小:学习顺序决策任务中的策略行为
  • 批准号:
    0915038
  • 财政年份:
    2009
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RI: Mastodon: A Large-Memory, High-Throughput Simulation Infrastructure
RI:Mastodon:大内存、高吞吐量的模拟基础设施
  • 批准号:
    0303609
  • 财政年份:
    2003
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Cooperative Coevolution of Neural Networks in Sequential Decision Tasks
顺序决策任务中神经网络的协同协同进化
  • 批准号:
    0083776
  • 财政年份:
    2000
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Modeling Development and Perceptual Phenomena in the Visual Cortex
视觉皮层的建模发展和感知现象
  • 批准号:
    9811478
  • 财政年份:
    1998
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Symbiotic Evolution of Neural Networks in Sequential Decision Tasks
神经网络在顺序决策任务中的共生进化
  • 批准号:
    9504317
  • 财政年份:
    1995
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
RIA: A Self-Organizing Neural Network Model of The PrimaryVisual cortex
RIA:初级视觉皮层的自组织神经网络模型
  • 批准号:
    9309273
  • 财政年份:
    1993
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Enhancing Organizational Learning: Leveraging Unified Diversity through Human Resource Management
职业:加强组织学习:通过人力资源管理利用统一多样性
  • 批准号:
    2336679
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Leveraging cells in milk to determine the molecular underpinnings of human lactation
利用牛奶中的细胞确定人类哺乳的分子基础
  • 批准号:
    MR/X035727/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Fellowship
CAREER: With Age Comes Wisdom: Leveraging Older Adults' Crystallized Decision-Making Abilities to Develop Adaptive Human-Automation Interfaces for Dynamic Environments
职业:随着年龄增长智慧:利用老年人具体的决策能力为动态环境开发自适应人类自动化界面
  • 批准号:
    2239642
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Leveraging Human iPSC-derived beta-cells to Probe Antigen Specificity of Anti-islet Memory T Cells in T1D
利用人 iPSC 衍生的 β 细胞探测 T1D 中抗胰岛记忆 T 细胞的抗原特异性
  • 批准号:
    10589556
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Leveraging mouse and human models to investigate neuroprotective effects of blood-derived exerkines in Alzheimer's disease
利用小鼠和人类模型研究血液来源的运动因子对阿尔茨海默病的神经保护作用
  • 批准号:
    10901031
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Leveraging human genetics to overcome complex diagnostic challenges, evaluation of pan-ancestry polygenic scores to reduce misdiagnosis of narcolepsy and circadian rhythm sleep wake disorders.
利用人类遗传学克服复杂的诊断挑战,评估泛祖多基因评分以减少发作性睡病和昼夜节律睡眠觉醒障碍的误诊。
  • 批准号:
    10576448
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Leveraging Human and Agent Guidance for Improved Reinforcement Learning
利用人类和代理指导来改进强化学习
  • 批准号:
    RGPIN-2021-02538
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Leveraging Human Factors to Evaluate Quality of Neonatal Delivery Room Care
利用人为因素评估新生儿产房护理质量
  • 批准号:
    10506590
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
The Multi-Omic Milk (MuMi) Study: Leveraging the IMiC Platform and the CHILD Cohort to study human milk as a biological system and understand its composition, determinants and impacts on child health
多组学牛奶 (MuMi) 研究:利用 IMiC 平台和儿童队列研究母乳作为一个生物系统,并了解其成分、决定因素以及对儿童健康的影响
  • 批准号:
    10532119
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
Leveraging Mammalian Cancers, Platinum-Quality Genome Assemblies, and Large-Scale Data to Identify Mechanisms of Rare Human Cancers
利用哺乳动物癌症、白金级基因组组装和大规模数据来识别罕见人类癌症的机制
  • 批准号:
    10677546
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了