Symbiotic Evolution of Neural Networks in Sequential Decision Tasks
神经网络在顺序决策任务中的共生进化
基本信息
- 批准号:9504317
- 负责人:
- 金额:$ 25.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-09-15 至 1999-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sequential decision tasks appear in many real-world domains, including control, resource allocation, routing, and scheduling. The objective of this project is to develop a new approach to sequential decision making based on symbiotic evolution of neural networks. In symbiotic evolution, a population of neurons are evolved with genetic algorithms to cooperate and form decision-making networks. Diversity is maintained in the population as part of the task and the system can find good solutions efficiently even in difficult tasks with sparse reinforcement. In the proposed project, symbiotic evolution will be analyzed both theoretically and experimentally, the algorithm will be further developed and applied to complex real-world domains such as local-area network management, and a practical high-level interface will be developed that will allow rapid application of the method to new domains. The main scientific contributions of the research are expected to be: (1) a novel, powerful method for extracting and encoding problem-specific knowledge automatically for sequential decision making, and (2) a thorough understanding of the role of diversity and cooperation in genetic algorithms. The development of the general application interface should also benefit many practical fields, including control engineering, military science, and operations management. The main hypotheses to be tested are: (1) Pattern recognition and generalization capabilities of neural networks can be used to implement effective and robust sequential decision making strategies;(2) Genetic algorithms can discover powepful problem-specific decision-making strategies even under sparse reinforcement; 3) By making population diversity an essential part of the task, symbiotic evolution can develop solutions to harder problems and do it more efficiently than standard genetic algorithms.
顺序决策任务出现在许多现实领域,包括控制、资源分配、路由和调度。本项目的目标是开发一种新的基于神经网络共生进化的序贯决策方法。在共生进化中,一群神经元与遗传算法一起进化,以进行协作并形成决策网络。作为任务的一部分,种群中保持了多样性,即使在具有稀疏强化的困难任务中,系统也能有效地找到良好的解决方案。在提出的项目中,将从理论和实验两方面对共生进化进行分析,该算法将进一步开发并应用于局域网管理等复杂的现实领域,并将开发一个实用的高级接口,使该方法能够快速应用到新的领域。这项研究的主要科学贡献有望是:(1)为顺序决策提供一种新的、强大的方法来自动提取和编码特定问题的知识,以及(2)彻底理解多样性和合作在遗传算法中的作用。通用应用程序接口的开发也将使许多实用领域受益,包括控制工程、军事科学和作战管理。要检验的主要假设是:(1)神经网络的模式识别和泛化能力可以用于实现有效和健壮的顺序决策策略;(2)遗传算法即使在稀疏强化的情况下也可以发现强大的特定于问题的决策策略;3)通过将种群多样性作为任务的重要组成部分,共生进化可以开发出更难解决的问题的解决方案,并且比标准遗传算法更有效。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Risto Miikkulainen其他文献
Holdout Evaluation
坚持评估
- DOI:
10.1007/978-0-387-30164-8_369 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Antal van den Bosch;B. Hengst;J. Lloyd;Risto Miikkulainen;Hendrik Blockeel - 通讯作者:
Hendrik Blockeel
MARLEDA: Effective distribution estimation through Markov random fields
- DOI:
10.1016/j.tcs.2015.07.049 - 发表时间:
2016-06-20 - 期刊:
- 影响因子:
- 作者:
Matthew Alden;Risto Miikkulainen - 通讯作者:
Risto Miikkulainen
Evolutionary Supervised Machine Learning
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Risto Miikkulainen - 通讯作者:
Risto Miikkulainen
Extracting the dynamics of the Hodgkin-Huxley model using recurrent neural networks
- DOI:
10.1186/1471-2202-8-s2-p100 - 发表时间:
2007-07-06 - 期刊:
- 影响因子:2.300
- 作者:
Sari Andoni;Manish Saggar;Tekin Meriçli;Risto Miikkulainen - 通讯作者:
Risto Miikkulainen
Modeling self-organizing tri-chromatic color selective regions in primary visual cortex
- DOI:
10.1186/1471-2202-8-s2-s24 - 发表时间:
2007-07-06 - 期刊:
- 影响因子:2.300
- 作者:
Judah De Paula;Jim Bednar;Risto Miikkulainen - 通讯作者:
Risto Miikkulainen
Risto Miikkulainen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Risto Miikkulainen', 18)}}的其他基金
Collaborative Research: MOD and TLS: A Predictive Simulation Model of Competitive Dynamics in Innovation
合作研究:MOD 和 TLS:创新竞争动态的预测模拟模型
- 批准号:
0914796 - 财政年份:2009
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
RI: Small: Learning Strategic Behavior in Sequential Decision Tasks
RI:小:学习顺序决策任务中的策略行为
- 批准号:
0915038 - 财政年份:2009
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
Pilot: Leveraging Human Creativity with Machine Discovery
试点:通过机器发现利用人类创造力
- 批准号:
0757479 - 财政年份:2008
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
RI: Mastodon: A Large-Memory, High-Throughput Simulation Infrastructure
RI:Mastodon:大内存、高吞吐量的模拟基础设施
- 批准号:
0303609 - 财政年份:2003
- 资助金额:
$ 25.95万 - 项目类别:
Continuing Grant
Cooperative Coevolution of Neural Networks in Sequential Decision Tasks
顺序决策任务中神经网络的协同协同进化
- 批准号:
0083776 - 财政年份:2000
- 资助金额:
$ 25.95万 - 项目类别:
Continuing Grant
Modeling Development and Perceptual Phenomena in the Visual Cortex
视觉皮层的建模发展和感知现象
- 批准号:
9811478 - 财政年份:1998
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
RIA: A Self-Organizing Neural Network Model of The PrimaryVisual cortex
RIA:初级视觉皮层的自组织神经网络模型
- 批准号:
9309273 - 财政年份:1993
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Inferring the evolution of functional connectivity over learning in large-scale neural recordings using low-tensor-rank recurrent neural networks
使用低张量秩递归神经网络推断大规模神经记录中功能连接学习的演变
- 批准号:
BB/Y513957/1 - 财政年份:2024
- 资助金额:
$ 25.95万 - 项目类别:
Research Grant
Project 1: Deciphering the Dynamic Evolution of the Tumor-Neural Interface
项目1:破译肿瘤-神经界面的动态演化
- 批准号:
10729275 - 财政年份:2023
- 资助金额:
$ 25.95万 - 项目类别:
Baldwinian Evolution of Task-Specialised High-Efficiency Learning in Neural Networks
神经网络中任务专业高效学习的鲍德温演化
- 批准号:
23K11262 - 财政年份:2023
- 资助金额:
$ 25.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
the Neural Genomic Basis Driving Species-Specific Vocalization Behavior Evolution
驱动物种特异性发声行为进化的神经基因组基础
- 批准号:
23K14163 - 财政年份:2023
- 资助金额:
$ 25.95万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Neural mechanisms and evolution of the control of behavioral expression in higher centers of the insect brain
昆虫大脑高级中心行为表达控制的神经机制和进化
- 批准号:
22H02357 - 财政年份:2022
- 资助金额:
$ 25.95万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Doctoral Dissertation Research: The evolution of the neural basis of learning and behavioral control
博士论文研究:学习和行为控制的神经基础的进化
- 批准号:
2120630 - 财政年份:2021
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
Neural Network based Graph Learning: Model Evolution and Real-World Application
基于神经网络的图学习:模型演化和实际应用
- 批准号:
21K12042 - 财政年份:2021
- 资助金额:
$ 25.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modeling cancer evolution for prediction with neural networks: methods and applications
利用神经网络对癌症进化进行建模以进行预测:方法和应用
- 批准号:
10675533 - 财政年份:2020
- 资助金额:
$ 25.95万 - 项目类别:
Sex difference and evolution of the brain illuminated by Connect-Seq: A novel single-cell level neural circuit mapping tool with cell type annotation
Connect-Seq 揭示大脑的性别差异和进化:一种具有细胞类型注释的新型单细胞水平神经回路绘图工具
- 批准号:
20K20589 - 财政年份:2020
- 资助金额:
$ 25.95万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Modeling cancer evolution for prediction with neural networks: methods and applications
利用神经网络对癌症进化进行建模以进行预测:方法和应用
- 批准号:
10467067 - 财政年份:2020
- 资助金额:
$ 25.95万 - 项目类别: