Mean values f L-functions
L 函数平均值
基本信息
- 批准号:0758235
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
-functions play a unifying role in number theory, as they connect many otherwise different problems. Recently it has become increasingly apparent that L-functions most naturally fit into families, and that many properties of an individual L-function can be studied through the family. In particular, the study of mean values of L-functions can be used to understand the sizes (such as nonvanishing and subconvexity) of L-functions at special values, which have great arithmetical interest. Furthermore, there is evidence that some families are connected to other families, a property that has been detected through careful evaluation of certain mean values; for example, Motohashi's celebrated exact formula connecting the fourth moment of the Riemann zeta function to the Hecke-Maass L-functions associated to the full modular group. The PI intends to investigate certain higher moment problems using techniques from analytic number theory to gain insight into higher degree L-functions. Furthermore, the PI seeks to develop new formulas connecting families of L-functions.The Riemann zeta function is the basic example of an L-function. The distribution of the prime numbers, the fundamental particles of the integers, are intertwined with properties of the Riemann zeta function, as predicted by the Riemann Hypothesis. The Riemann zeta function itself is just one part of a complex web of L-functions that themselves interact in mysterious ways. This project aims to further the understanding of the Riemann zeta function and its generalizations, especially by finding new links between different kinds of L-functions.
-functions play a unifying role in number theory, as they connect many otherwise different problems. Recently it has become increasingly apparent that L-functions most naturally fit into families, and that many properties of an individual L-function can be studied through the family. In particular, the study of mean values of L-functions can be used to understand the sizes (such as nonvanishing and subconvexity) of L-functions at special values, which have great arithmetical interest. Furthermore, there is evidence that some families are connected to other families, a property that has been detected through careful evaluation of certain mean values; for example, Motohashi's celebrated exact formula connecting the fourth moment of the Riemann zeta function to the Hecke-Maass L-functions associated to the full modular group. The PI intends to investigate certain higher moment problems using techniques from analytic number theory to gain insight into higher degree L-functions. Furthermore, the PI seeks to develop new formulas connecting families of L-functions.The Riemann zeta function is the basic example of an L-function. The distribution of the prime numbers, the fundamental particles of the integers, are intertwined with properties of the Riemann zeta function, as predicted by the Riemann Hypothesis. The Riemann zeta function itself is just one part of a complex web of L-functions that themselves interact in mysterious ways. This project aims to further the understanding of the Riemann zeta function and its generalizations, especially by finding new links between different kinds of L-functions.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Young其他文献
Development of an autonomous robotic system for terrain mapping
开发用于地形测绘的自主机器人系统
- DOI:
10.1109/m2vip.2017.8211474 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Matthew Young;Xiaoqi Chen;C. Pretty;Stuart Ralston;Mathias Roehring - 通讯作者:
Mathias Roehring
Spontaneous, Intrasphenoidal Rupture of Ecchordosis Physaliphora with Pneumocephalus Captured During Serial Imaging and Clinical Follow-Up: Pathoanatomic Features and Management
- DOI:
10.1016/j.wneu.2020.05.220 - 发表时间:
2020-09-01 - 期刊:
- 影响因子:
- 作者:
Ahrya Derakhshani;Stephanie Livingston;Christopher William;Seth Lieberman;Matthew Young;Donato Pacione;Seena Dehkharghani - 通讯作者:
Seena Dehkharghani
The Future of Front-line Metastatic Bladder Cancer is Platinum-free
晚期转移性膀胱癌的未来是无铂治疗
- DOI:
10.1016/j.euf.2024.04.005 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:5.600
- 作者:
Matthew Young - 通讯作者:
Matthew Young
Ocean connectivity drives trophic support for consumers in an intermittently closed coastal lagoon
- DOI:
10.1016/j.ecss.2021.107665 - 发表时间:
2022-01-05 - 期刊:
- 影响因子:
- 作者:
Matthew Young;Frederick Feyrer;Darren Fong;Rachel Johnson;Tamara Kraus;Veronica Larwood;Elizabeth Stumpner;Megan Young - 通讯作者:
Megan Young
2204 IS MRI WITH DIFFUSION WEIGHTED IMAGING EFFECTIVE IN DETECTING PROSTATE CANCER IN MEN WITH PREVIOUS NEGATIVE BIOPSIES?
- DOI:
10.1016/j.juro.2013.02.2113 - 发表时间:
2013-04-01 - 期刊:
- 影响因子:
- 作者:
Matthew Young;Ryan Levey;James Rosoff;Josh Smith;George Ghareeb;Brian Lane;Andrew Hardie;Thomas Keane;Stephen Savage - 通讯作者:
Stephen Savage
Matthew Young的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Young', 18)}}的其他基金
Analytic problems around automorphic forms and L-functions
围绕自守形式和 L 函数的分析问题
- 批准号:
2302210 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Representation theory in unoriented and non-semisimple physics
无向和非半简单物理中的表示论
- 批准号:
2302363 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Families of L-Functions and Analytic Number Theory
L 函数族和解析数论
- 批准号:
2001306 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Families of L-functions and automorphic forms
L 函数族和自守形式
- 批准号:
1101261 - 财政年份:2011
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似海外基金
Theoretical elucidation of hypergeometric functions behind multiple zeta values and multiple zeta algebra based on them.
多zeta值背后的超几何函数以及基于它们的多zeta代数的理论阐明。
- 批准号:
23K03026 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Special Values of L-functions
L 函数的特殊值
- 批准号:
RGPIN-2018-06313 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Aspects of Special Values of L-Functions
L 函数特殊值的算术方面
- 批准号:
2303864 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Special values of L-functions and p-adic modular forms
L 函数和 p 进模形式的特殊值
- 批准号:
534722-2019 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Non-vanishing of central values of L-functions
L 函数中心值不消失
- 批准号:
561488-2021 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
University Undergraduate Student Research Awards
Analytic Number Theory and mean values of L-functions
解析数论和 L 函数的平均值
- 批准号:
2660863 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Studentship
Special Values of L-functions
L 函数的特殊值
- 批准号:
RGPIN-2018-06313 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Aspects of Special Values of L-Functions
L 函数特殊值的算术方面
- 批准号:
2001409 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Relating Special Values of L-Functions with Orders of Tate-Shafarevich Groups
将 L-函数的特殊值与 Tate-Shafarevich 群的阶相关
- 批准号:
2001280 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant