Relating Special Values of L-Functions with Orders of Tate-Shafarevich Groups
将 L-函数的特殊值与 Tate-Shafarevich 群的阶相关
基本信息
- 批准号:2001280
- 负责人:
- 金额:$ 15.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Finding rational numbers that solve a polynomial equation is harder than finding solutions that are real numbers. This is because the real numbers form a number system called a completion of the rational numbers, and the solutions in a completion can usually be found more easily. One may hope to find the hard rational number solutions by scrutinizing the easier solutions living in the completions, but there may be a discrepancy between these two types of solutions. One central object in number theory designed to measure such a discrepancy is the Tate-Shafarevich group, and this group is only understood in some special cases. Two central conjectures (the Birch and Swinnerton-Dyer conjecture and the Bloch-Kato conjecture) relate sizes of Tate-Shafarevich groups to special values of an appropriate function. This project outlines some progress on these conjectures via a theory called Iwasawa theory. Another goal is to understand the interplay between the special values from the perspective of a modern form of analysis, called p-adic analysis, and use this interplay to give an easy explanation of complicated phenomena of certain crystalline representations.The Iwasawa main conjecture for elliptic curves at supersingular primes was proved by Wan in the case in which the trace of Frobenius vanishes, and the PI in the general supersingular case. The plan is to extend this work to more general modular forms. One central idea in the supersingular case is the construction of two appropriate p-adic power series, which is known explicitly by work of Pollack when the Frobenius trace is zero. The PI will work with Otsuki to explicitly construct the appropriate pair of p-adic power series in more general cases by developing the analytic aspect of supersingular Iwasawa theory further. One goal of such an explicit construction is determining reductions of crystalline Galois representations, shedding light on some conjectures of Breuil which describe these reductions purely in terms of the Frobenius trace and its Hodge-Tate weight. Another goal is to establish asymptotic formulas for the size of the p-primary components of Tate-Shafarevich groups as defined by Bloch and Kato, generalizing work of Lei, Loeffler, and Zerbes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
找到解决多项式方程的有理数比找到真实的数的解更难。这是因为真实的数形成了一个称为有理数完备化的数字系统,而完备化中的解通常更容易找到。人们可能希望通过仔细检查存在于完备中的较容易的解来找到硬有理数解,但是这两种类型的解之间可能存在差异。数论中用来度量这种差异的一个中心对象是泰特-沙法列维奇群,这个群只在某些特殊情况下才被理解。两个中心猜想(Birch和Swinnerton-Dyer猜想和Bloch-Kato猜想)将Tate-Shafarevich群的大小与适当函数的特殊值联系起来。该项目通过一种称为岩泽理论的理论概述了这些理论的一些进展。另一个目标是从现代分析形式的角度理解特殊值之间的相互作用,称为p-adic分析,并使用这种相互作用来给出某些晶体表示的复杂现象的简单解释。岩泽主要猜想椭圆曲线在超奇异素数的情况下,证明了万在弗罗贝纽斯的踪迹消失,和PI在一般的超奇异情况下。计划将这项工作扩展到更一般的模块化形式。超奇异情形的一个中心思想是构造两个适当的p-adic幂级数,当Frobenius迹为零时,Pollack的工作明确地知道这一点。PI将与大月合作,通过进一步发展超奇异岩泽理论的分析方面,在更一般的情况下明确地构造适当的p进幂级数对。这种显式构造的一个目标是确定晶体伽罗瓦表示的约化,从而揭示布吕伊的一些猜想,这些猜想纯粹根据弗罗贝纽斯迹及其霍奇-泰特权来描述这些约化。另一个目标是建立由Bloch和Kato定义的Tate-Shafarevich群的p-主分量的大小的渐近公式,推广Lei,Loeffler和Zerbes的工作。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chromatic Selmer groups and arithmetic invariants of elliptic curves
- DOI:10.5802/jtnb.1190
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Florian Ito Sprung
- 通讯作者:Florian Ito Sprung
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Florian Sprung其他文献
On pairs of p-adic L-functions for weight two modular forms
关于权重两个模形式的 p 进 L 函数对
- DOI:
10.2140/ant.2017.11.885 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Florian Sprung - 通讯作者:
Florian Sprung
La matrice de logarithme en termes de chiffres p-adiques
- DOI:
10.1007/s40316-023-00215-2 - 发表时间:
2023-06-21 - 期刊:
- 影响因子:0.400
- 作者:
Florian Sprung - 通讯作者:
Florian Sprung
Zeta-polynomials for modular form periods
模形式周期的 Zeta 多项式
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
K. Ono;Larry Rolen;Florian Sprung - 通讯作者:
Florian Sprung
On the Iwasawa main conjectures for modular forms at non-ordinary primes
关于非普通素数模形式的岩泽主要猜想
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Francesc Castella;Mirela cCiperiani;C. Skinner;Florian Sprung - 通讯作者:
Florian Sprung
Cotorsion of anti-cyclotomic Selmer groups on average
抗分圆 Selmer 群的平均扭曲
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Debanjana Kundu;Florian Sprung - 通讯作者:
Florian Sprung
Florian Sprung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
非阶化Hamiltonial型和Special型李代数的表示
- 批准号:10701002
- 批准年份:2007
- 资助金额:15.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Special Values of L-functions
L 函数的特殊值
- 批准号:
RGPIN-2018-06313 - 财政年份:2022
- 资助金额:
$ 15.3万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Aspects of Special Values of L-Functions
L 函数特殊值的算术方面
- 批准号:
2303864 - 财政年份:2022
- 资助金额:
$ 15.3万 - 项目类别:
Standard Grant
Special values of L-functions and p-adic modular forms
L 函数和 p 进模形式的特殊值
- 批准号:
534722-2019 - 财政年份:2021
- 资助金额:
$ 15.3万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Special Values of L-functions
L 函数的特殊值
- 批准号:
RGPIN-2018-06313 - 财政年份:2021
- 资助金额:
$ 15.3万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Aspects of Special Values of L-Functions
L 函数特殊值的算术方面
- 批准号:
2001409 - 财政年份:2020
- 资助金额:
$ 15.3万 - 项目类别:
Standard Grant
Special values of L-functions and p-adic modular forms
L 函数和 p 进模形式的特殊值
- 批准号:
534722-2019 - 财政年份:2020
- 资助金额:
$ 15.3万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Special Values of L-functions
L 函数的特殊值
- 批准号:
RGPIN-2018-06313 - 财政年份:2020
- 资助金额:
$ 15.3万 - 项目类别:
Discovery Grants Program - Individual
Dirichlet series in several variables associated to automorphic forms and their applications to special values of automorphic L-functions
与自同构形式相关的几个变量的狄利克雷级数及其在自同构 L 函数特殊值中的应用
- 批准号:
19K03419 - 财政年份:2019
- 资助金额:
$ 15.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Special Values of L-functions
L 函数的特殊值
- 批准号:
RGPIN-2018-06313 - 财政年份:2019
- 资助金额:
$ 15.3万 - 项目类别:
Discovery Grants Program - Individual
L-Values, Special Cycles, and Euler Systems
L 值、特殊循环和欧拉系统
- 批准号:
1901985 - 财政年份:2019
- 资助金额:
$ 15.3万 - 项目类别:
Continuing Grant