Emergent Properties of Highly Correlated Electronic Systems
高度相关电子系统的涌现特性
基本信息
- 批准号:0758356
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-10-01 至 2012-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARY:This award supports research and education on emergent properties of highly correlated electronic systems. The main thrust of the research undertaken here is the effort at theoretical characterization of qualitatively new behaviors of interacting electrons (i.e. new states of matter) as well as new regimes of parameters in which familiar states of matter behave in new and different ways. In addition, some of the research explores qualitatively the relation between the microscopic interactions between electrons and the effective parameters that control the macroscopic behavior of solids.The search for new states of matter continues an ongoing effort by the PI in the theory of ''electronic liquid crystals.'' This work is based on an analogy between classical liquid crystals and corresponding phases of strongly interacting electrons. Electronic liquid crystals are quantum states with behaviors intermediate between a Fermi liquid and a Wigner crystal. Examples of such states have recently been observed experimentally: the anisotropic states (quantum Hall nematics) that are seen in high mobility quantum Hall devices and the metamagnetic nematic phase that has recently been identified in Sr3Ru2O7. The more microscopic issues to be addressed involve the physics of the superconducting Tc. A number of questions are addressed theoretically. What is it about superconductivity that causes transition temperatures, generally, to be so low, while other orders, such as ferromagnetism, frequently onset at much higher temperatures? Why is there, in the cuprate high temperature superconductors, an ''optimal'' doping at which Tc is maximal ? what is there an excess of in ''overdoped'' cuprates? Are there optimal mesoscale structures for superconductivity, structures that enhance the strength of the electron pairing without too strongly suppressing the superfluid stiffness? The research also seeks to interpret the importance of evidence of wide-spread mesoscale inhomogeneities in the cuprates ? both self-organized (i.e. stripes) and nucleated by disorder. The research is motivated by a need to clarify whether these observations are complicating details or essential to the mechanism of high temperature superconductivity.The effort undertaken has broader impacts with both scientific and educational consequences. Scientifically, there is impact in extending the understanding of the origins of high temperature superconductivity because that opens new theoretical opportunities as well as providing better ability to design materials with this highly desirable property. Involving students and postdoctoral researchers in the diverse problems and theoretical techniques used provides an exceptional training for talented young people. Past students and postdoctoral researchers have gone on to university faculty positions and their own careers in teaching and research and some have found successful positions in high tech companies and a variety of other fields outside of mainstream physics.NONTECHNICAL SUMMARY:This award supports research and education on exotic properties and unexplained electronic states of unusual materials. The broad thrust of the research undertaken here is the theoretical characterization of qualitatively new behaviors and new states of matter as well as investigating how familiar forms matter can be made to behave in new and different ways. This research explores these unusual states of matter by looking at the behavior of electrons and the microscopic level of the atoms that make up the material and then connecting those behaviors with the large scale properties which are seen in the material as a solid whole.The search for new states of matter continues an ongoing effort by the PI in the theory of ''electronic liquid crystals.'' This work develops theories of why some materials have electrons that are not just quiescently distributed more or less uniformly but which instead group together in various patterns.The issues to be addressed also involve the physics of the superconducting materials, those which can conduct electricity with no resistance and thus no waste of energy. The questions are quite basic. What is it about superconductivity that causes working temperatures, generally, to be so low? Why is there, in some high temperature superconductors, an ''optimal'' composition at which the working temperature is highest? Are there optimal ways of creating structures for superconductivity, structures that enhance performance? The research is motivated by a need to clarify which experimental observations are complicating details and which are essential clue to discovering to the mechanism needed to explain high temperature superconductivity.The effort undertaken has broader impacts with both scientific and educational consequences. Scientifically, there is impact in extending the understanding of the origins of high temperature superconductivity because that opens new theoretical opportunities as well as providing better ability to design materials with this highly desirable property. Involving students and postdoctoral researchers in the diverse problems and theoretical techniques used provides an exceptional training for talented young people. Past students and postdoctoral researchers have gone on to university faculty positions and their own careers in teaching and research and some have found successful positions in high tech companies and a variety of other fields outside of mainstream physics.
技术摘要:该奖项支持有关高度相关电子系统新兴属性的研究和教育。这里进行的研究的主要目的是努力在互动电子的定性新行为(即物质的新状态)以及新的参数制度的理论表征上,其中熟悉的物质状态以新的和不同的方式行事。此外,某些研究还定性地探索了电子之间的微观相互作用与控制固体宏观行为的有效参数之间的关系。对物质的搜索持续的搜索持续了PI在“电子液体晶体”理论中的持续努力。“这项工作是基于古典液体晶体和相应相互作用的相互作用层之间的类似学。 电子液晶是量子状态,其行为中间是费米液体和wigner晶体之间的。最近已经通过实验观察到了此类状态的例子:在高迁移率量子霍尔设备中可见的各向异性状态(量子霍尔列明)和最近在SR3RU2O7中鉴定出的元磁性nematic阶段。要解决的微观问题涉及超导TC的物理。从理论上解决了许多问题。 超导性使过渡温度通常如此低的超导性是什么,而其他秩序(例如铁磁性)经常在更高的温度下发作?为什么在Cuprate高温超导体中有“最佳”兴奋剂在哪个TC最大的兴奋剂中? “超额”铜矿中有什么过多的?是否有最佳的中尺度结构可用于超导性,可以增强电子配对强度而不会过分抑制超流体刚度的结构?该研究还试图解释丘比特人中广泛中尺度不均匀性的证据的重要性吗?自组织(即条纹)都被无序成核。这项研究的激励是需要澄清这些观察结果是否使细节复杂化或对高温超导性机制必不可少。从科学上讲,扩展对高温超导性的起源的理解有影响,因为这开辟了新的理论机会,并提供了更好地设计材料的能力。 参与不同问题和理论技术的学生和博士后研究人员为才华横溢的年轻人提供了出色的培训。过去的学生和博士后研究人员一直从事大学教师职位以及他们自己的教学和研究职业,有些人在高科技公司和主流物理以外的许多其他领域中获得了成功的职位。该奖项支持外来物业的研究和教育,以及对不寻常材料的未解释的电子状态的研究和教育。这里进行的研究的广泛作用是定性新行为和物质的新状态的理论表征,以及研究如何使熟悉的形式以新的和不同的方式行事。这项研究通过查看电子的行为以及组成材料的原子的微观水平,然后将这些行为与大规模的属性联系起来,这些材料在材料中被视为固体整体,对物质的搜索持续努力,这些材料不再是“电子液体液体的理论”,这些材料持续不断地努力。统一但要以各种模式将其分组在一起。要解决的问题还涉及超导材料的物理,这些材料可以无电,因此没有浪费能量的材料。问题很基本。 超导性使工作温度通常如此之低的是什么?为什么在某些高温超导体中,工作温度最高的“最佳”组成?是否有最佳的方法来创建超导性的结构,增强性能的结构?这项研究的激励是需要阐明哪些实验观察结果使细节复杂化,哪些是发现高温超导性所需的机制的重要线索。所进行的努力对科学和教育后果产生了更大的影响。从科学上讲,扩展对高温超导性的起源的理解有影响,因为这开辟了新的理论机会,并提供了更好地设计材料的能力。 参与不同问题和理论技术的学生和博士后研究人员为才华横溢的年轻人提供了出色的培训。过去的学生和博士后研究人员一直从事大学教师职位以及他们自己的教学和研究职业,有些人在高科技公司和主流物理以外的其他各种领域中找到了成功的职位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Kivelson其他文献
Steven Kivelson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Kivelson', 18)}}的其他基金
Conference: Aspen Winter Conference: Disorder and Quantum Phases of Matter
会议:阿斯彭冬季会议:物质的无序和量子相
- 批准号:
2409357 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
NSF-BSF: Theory of Quantum Materials
NSF-BSF:量子材料理论
- 批准号:
2310312 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
NSF/DMR-BSF: Theory of Quantum Materials
NSF/DMR-BSF:量子材料理论
- 批准号:
2000987 - 财政年份:2020
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Theory of order and fluctuations in quantum materials
量子材料的有序与涨落理论
- 批准号:
1608055 - 财政年份:2016
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Emergent Behavior of Microscopic Model Systems
微观模型系统的涌现行为
- 批准号:
1265593 - 财政年份:2013
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Theory of Highly Correlated Electronic Systems
高度相关电子系统理论
- 批准号:
0531196 - 财政年份:2004
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Theory of Highly Correlated Electronic Systems
高度相关电子系统理论
- 批准号:
0421960 - 财政年份:2004
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Quantum Theory of Strongly Interacting Electrons
强相互作用电子的量子理论
- 批准号:
9808685 - 财政年份:1998
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Low Energy Implications of Strong Electronic Correlations
强电子相关性的低能量影响
- 批准号:
9312606 - 财政年份:1993
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
相似国自然基金
兼具小尺寸相区和高度不对称层状结构的嵌段共聚物
- 批准号:52373024
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
矢量时空涡旋的高度局域特性研究
- 批准号:12274299
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
矢量时空涡旋的高度局域特性研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于共混物特性调控制备高度取向泡孔/膜交替结构的发泡材料与增强机制
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于共混物特性调控制备高度取向泡孔/膜交替结构的发泡材料与增强机制
- 批准号:52273043
- 批准年份:2022
- 资助金额:53.00 万元
- 项目类别:面上项目
相似海外基金
防護服・産業材強度の経年劣化予測へ資する高性能繊維糸の対UV特性の活用アプローチ
一种利用高性能纤维纱线的抗紫外线特性的方法,有助于预测防护服和工业材料强度的老化退化
- 批准号:
23K21020 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
がん細胞の脂肪酸代謝特性を活用した高精度がん早期診断モデルの構築と社会実装
利用癌细胞脂肪酸代谢特征的高精度早期癌症诊断模型的构建和社会实施
- 批准号:
24K15818 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
高解像度衛星ビッグデータを活用したアジアの水温変動特性の解明
利用高分辨率卫星大数据阐明亚洲水温波动特征
- 批准号:
24K00993 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
高強度中性子環境における電気絶縁被覆機能材料の反跳原子による特性変化
高强度中子环境中反冲原子引起的电绝缘功能材料性能的变化
- 批准号:
23K22480 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
高効率・高精度を両立した新規ゲノム編集法TPN法の更なる効率向上を目指す特性解析
旨在进一步提高高效、高精度的新型基因组编辑方法TPN方法效率的特征分析
- 批准号:
24K09427 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)