Investigations in Mixed Integer Programming

混合整数规划研究

基本信息

  • 批准号:
    0800057
  • 负责人:
  • 金额:
    $ 39.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

This grant provides funding for the investigation of theory and computational strategies for solving dense mixed integer programming (MIP) problems. Prior work has focused on sparse MIP problems, but in many applications of MIP technology, the MIP models are often dense. The research will investigate the facial structure of the independent set polytope via the construction of high-dimensional conflict hypergraphs. Specifically, various structures such as hyper-cliques, hyper-odd holes, hyper-odd antiholes, hyper-webs and hyper-antiwebs will be identified on the conflict hypergraph, and valid inequalities and facet-defining properties will be derived. To investigate the complexity, there will be an analysis on the ranks of the cutting planes associated with the hypergraphical structures. For computational strategies, the research will generalize a separation algorithm for identifying odd holes in hypergraphs, develop fast heuristics for generating the hyper-cliques, and implement the associated cutting planes within a parallel cutting plane and branch-and-cut environment to gauge their effectiveness and performance.If successful, the results of the research will advance the frontiers of knowledge in integer programming in several areas. First, it will lead to fundamental theoretical advances. Second, from a computational standpoint, it will offer new directions of research related to separation strategies for hypergraphic structures. The research will also have an impact in several application areas. Dense MIP problems arise naturally in many medical applications, including constrained discriminant analysis for medical diagnosis; brachytherapy cancer treatment; and medical imaging. The ability to solve the associated MIP problem instances will help to advance the medical frontiers. The research will also lead to advances in finance and business, including market-share problems, and the wide range of applications that involve classification (constrained discrimination), such as credit lending prediction, market trends, and consumer preference prediction.
这笔资金用于研究解决密集混合整数规划(MIP)问题的理论和计算策略。以前的工作主要集中在稀疏MIP问题上,但在MIP技术的许多应用中,MIP模型往往是稠密的。本研究将通过构建高维冲突超图来研究独立集合多面体的面部结构。具体地说,在冲突超图上将识别各种结构,如超团、超奇洞、超奇反洞、超网和超反网,并将得到有效的不等式和刻面定义性质。为了调查复杂性,将对与超图形结构相关的切割平面的等级进行分析。在计算策略方面,该研究将推广识别超图中奇洞的分离算法,开发快速启发式算法来生成超团,并在平行割平面和分枝割环境中实现相关联的割平面,以衡量其有效性和性能。如果研究成功,研究结果将在多个领域推进整数规划知识的前沿。首先,它将带来基础性的理论进步。其次,从计算的角度来看,它将为超图结构的分离策略提供新的研究方向。这项研究还将在几个应用领域产生影响。密集的MIP问题自然地出现在许多医疗应用中,包括用于医疗诊断的约束判别分析;癌症的近距离放射治疗;以及医学成像。解决相关MIP问题实例的能力将有助于推进医学前沿。这项研究还将促进金融和商业的进步,包括市场份额问题,以及涉及分类(约束判别)的广泛应用,如信贷贷款预测、市场趋势和消费者偏好预测。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eva Lee其他文献

Design, development, and evaluation of upper and lower limb orthoses with intelligent control for rehabilitation
智能控制康复上下肢矫形器的设计、开发与评价
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Hung;Ho‐Yuen Cheung;Nathan Wan;Eva Lee;C. Lai;Kun Pan;Rongle Liang;Carlin Chu;Sheung;Douglas Ng;D.H.K. Chow
  • 通讯作者:
    D.H.K. Chow
FRI-473 The oncogenic m6A demethylase FTO promotes tumorigenesis and immune escape by upregulating GPNMB in hepatocellular carcinoma
  • DOI:
    10.1016/s0168-8278(24)01335-7
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Vanilla Xin Zhang;Ao Chen;Qingyang Zhang;Karen Man-Fong Sze;Lu Tian;Hongyang Huang;Eva Lee;Jingyi Lu;Xueying Lyu;Joyce Man Fong Lee;Jack Chun-Ming Wong;DanielWai-Hung Ho;Irene Oi-Lin Ng
  • 通讯作者:
    Irene Oi-Lin Ng
This information is current as Infection Lymphocyte Activation in Response to Viral Type I Interferons Trigger Systemic , Partial
此信息是最新的,作为响应病毒 I 型干扰素触发的感染淋巴细胞激活全身、部分
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Alsharifi;M. Lobigs;M. Regner;Eva Lee;Aulikki M. L. Koskinen;A. Müllbacher
  • 通讯作者:
    A. Müllbacher
Nuclear localization of BRCA1-associated protein 1 is important in suppressing hepatocellular carcinoma metastasis via CTCF and NRF1/OGT axis
BRCA1 相关蛋白 1 的核定位在通过 CTCF 和 NRF1/OGT 轴抑制肝细胞癌转移中很重要
  • DOI:
    10.1038/s41419-025-07451-0
  • 发表时间:
    2025-02-21
  • 期刊:
  • 影响因子:
    9.600
  • 作者:
    Xiaoyu Xie;Yu-Man Tsui;Vanilla Xin Zhang;Tiffany Ching-Yun Yu;Abdullah Husain;Yung-Tuen Chiu;Lu Tian;Eva Lee;Joyce Man-Fong Lee;Hoi-Tang Ma;Daniel Wai-Hung Ho;Karen Man-Fong Sze;Irene Oi-Lin Ng
  • 通讯作者:
    Irene Oi-Lin Ng
Investigation of a Commercial Product (BiOWiSH TM) for Nitrogen Management
用于氮管理的商业产品 (BiOWiSH TM) 的研究
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eva Lee
  • 通讯作者:
    Eva Lee

Eva Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eva Lee', 18)}}的其他基金

IUCRC RAPID: Collaborative Research: Rapid Detection & Systems Modeling for Containment and Casualty Mitigation in Ebola Outbreak
IUCCRC RAPID:合作研究:快速检测
  • 批准号:
    1516074
  • 财政年份:
    2015
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Standard Grant
I/UCRC: Center for Health Organization Transformation
I/UCRC:卫生组织转型中心
  • 批准号:
    1361532
  • 财政年份:
    2014
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Continuing Grant
RAPID: Population Protection and Monitoring in Response to Radiological Incidents
RAPID:针对放射事件的人口保护和监测
  • 批准号:
    1138733
  • 财政年份:
    2011
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Standard Grant
I/UCRC Collaborative: The Center for Health Organization Transformation
I/UCRC 合作:卫生组织转型中心
  • 批准号:
    0832390
  • 财政年份:
    2008
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Continuing Grant
Investigations in Combinatorial Optimization and its Applications to DNA Sequencing Problems
组合优化及其在 DNA 测序问题中的应用研究
  • 批准号:
    0300435
  • 财政年份:
    2003
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Standard Grant
ITR/AP(CCR): Investigation of Computational Optimization in Brachytherapy Cancer Treatment
ITR/AP(CCR):近距离放射治疗癌症治疗中的计算优化研究
  • 批准号:
    0313169
  • 财政年份:
    2003
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Standard Grant
STUDY: A Prototype Radiation Therapy Treatment Planning Research Toolkit
研究:原型放射治疗治疗计划研究工具包
  • 批准号:
    0331755
  • 财政年份:
    2003
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Standard Grant
Mixed Integer Programming Applied to Radiation Treatment Planning Optimization
混合整数规划在放射治疗计划优化中的应用
  • 批准号:
    0098219
  • 财政年份:
    2001
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Standard Grant
Investigations in Mixed Integer Programming
混合整数规划研究
  • 批准号:
    9721402
  • 财政年份:
    1998
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Standard Grant
CAREER: Mixed Integer Programming-Parallelism and Applications to Statistical Analysis
职业:混合整数编程并行性及其在统计分析中的应用
  • 批准号:
    9796312
  • 财政年份:
    1997
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Standard Grant

相似国自然基金

基于MIXED Transformer和DS-TransUNet构建嵌入椎旁肌退变量化模块的体内校准骨密度模型检测骨质疏松的可行性研究。
  • 批准号:
    82302303
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
  • 批准号:
    2340527
  • 财政年份:
    2024
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Continuing Grant
CRII: OAC: RUI: Real-Time, Mixed-Integer Model Predictive Control via Learned GPU-Acceleration
CRII:OAC:RUI:通过学习 GPU 加速进行实时混合整数模型预测控制
  • 批准号:
    2246022
  • 财政年份:
    2023
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Standard Grant
Student Support for Mixed Integer Programming Workshop, Poster Session and Computational Competition, 2023 - 2025
混合整数编程研讨会、海报会议和计算竞赛的学生支持,2023 - 2025
  • 批准号:
    2326892
  • 财政年份:
    2023
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Standard Grant
Bilinear Mixed-Integer Programming: Theory and Applications
双线性混合整数规划:理论与应用
  • 批准号:
    532673-2019
  • 财政年份:
    2022
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Theory, computations and applications of structured Mixed-Integer Programs
结构化混合整数程序的理论、计算和应用
  • 批准号:
    RGPIN-2020-04030
  • 财政年份:
    2022
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Discovery Grants Program - Individual
2022 Mixed Integer Programming Workshop Poster Session and Computational Competition; New Brunswick, New Jersey; May 24-26, 2022
2022年混合整数规划研讨会海报会议及计算竞赛;
  • 批准号:
    2211222
  • 财政年份:
    2022
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Standard Grant
Dimension reduction techniques for mixed integer programs
混合整数规划的降维技术
  • 批准号:
    RGPIN-2021-02475
  • 财政年份:
    2022
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Discovery Grants Program - Individual
Bilinear Mixed-Integer Programming: Theory and Applications
双线性混合整数规划:理论与应用
  • 批准号:
    532673-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
MAiNGO – McCormick-based Algorithm for mixed-integer Nonlinear Global Optimization
MAiNGO – 基于 McCormick 的混合整数非线性全局优化算法
  • 批准号:
    442664501
  • 财政年份:
    2021
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Research Grants
Analog Digital Mixed-Signal Integrated Circuit Architecture based on Integer Theory
基于整数理论的模拟数字混合信号集成电路结构
  • 批准号:
    21K04190
  • 财政年份:
    2021
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了