Loewner Evolutions and Quasiconformal Mappings

Loewner 演化和拟共形映射

基本信息

  • 批准号:
    0800968
  • 负责人:
  • 金额:
    $ 37.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-06-15 至 2012-05-31
  • 项目状态:
    已结题

项目摘要

The principal investigator will study conformal mappings generated by the Loewner differential equation, and random conformal and quasiconformal mappings. The Loewner equation relates a continuously increasing sequence of planar simply connected domains to a real-valued function, the driving term of the equation. The correspondence is by means of conformal maps onto a standard domain (such as a disc). Through this mechanism complicated two-dimensional shapes can be encoded by seemingly simpler objects, namely, real-valued functions of a real variable. The correspondence between a shape and its driving term is complicated and leaves many open questions. The aim of this project is to provide a better understanding of this correspondence. For instance, the principal investigator will study the continuity of the sets under deformations of the driving terms. In light of Oded Schramm's SLE and the spectacular work of Lawler, Schramm, Werner, Smirnov and others, random driving terms (in particular, Brownian motion) are especially interesting and will be a focus of the research. Conformal mappings are often used to change coordinates from one region to a simpler region, such as a disc. They have applications in many areas within mathematics and to several branches of physics. On small scale, conformal maps look like rotations and dilations. Hence it is plausible that rotation- and dilation-invariant mathematical models of physical phenomena (e.g., Brownian motion, percolation, crystal growth, electrodeposition) are invariant under conformal coordinate changes. Theoretical physicists have long used this heuristic and obtained predictions for many of these models. Oded Schramm's discovery of the stochastic Loewner evolution (SLE, the Loewner equation driven by one-dimensional Brownian motion) and Smirnov's work on percolation have put this philosophy on a firm mathematical basis. The results obtained in recent years have generated a lot of excitement in both the mathematics and the physics communities. They have also created a new bridge between the two disciplines. A goal of this research is to shed new light on the mathematical side of this emerging theory.
主要研究者将研究由Loewner微分方程产生的共形映射,以及随机共形和拟共形映射。Loewner方程将连续增加的平面单连通域序列与一个实值函数(方程的驱动项)联系起来。对应是通过保角映射到一个标准域(如一个磁盘)。通过这种机制,复杂的二维形状可以由看似简单的对象编码,即真实的变量的实值函数。形状与其驱动项之间的对应关系是复杂的,并留下许多悬而未决的问题。这个项目的目的是提供一个更好地了解这种对应关系。例如,首席研究员将研究驱动项变形下集合的连续性。鉴于Oded Schramm的SLE和Lawler、Schramm、Werner、Smirnov等人的出色工作,随机驱动项(特别是布朗运动)特别有趣,并将成为研究的重点。保角映射通常用于将坐标从一个区域更改为更简单的区域,例如圆盘。它们在数学的许多领域和物理学的几个分支中都有应用。在小尺度上,共形映射看起来像旋转和膨胀。因此,物理现象的旋转和膨胀不变的数学模型(例如,布朗运动、渗流、晶体生长、电沉积等)在共形坐标变化下是不变的。理论物理学家长期以来一直使用这种启发式方法,并获得了许多这些模型的预测。奥德施拉姆的发现随机Loewner演变(SLE,Loewner方程驱动的一维布朗运动)和斯米尔诺夫的工作渗流把这一哲学的坚实的数学基础。近年来所取得的成果在数学界和物理界都引起了很大的轰动。他们还在两个学科之间建立了一座新的桥梁。这项研究的一个目标是为这一新兴理论的数学方面提供新的见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steffen Rohde其他文献

Continuity of the SLE trace in simply connected domains
  • DOI:
    10.1007/s11856-011-0161-y
  • 发表时间:
    2012-06-12
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Christophe Garban;Steffen Rohde;Oded Schramm
  • 通讯作者:
    Oded Schramm
Loewner curvature
  • DOI:
    10.1007/s00208-015-1254-4
  • 发表时间:
    2015-07-14
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Joan R. Lind;Steffen Rohde
  • 通讯作者:
    Steffen Rohde
On the continuity of $$\text{ SLE }_{\kappa }$$ in $$\kappa $$
  • DOI:
    10.1007/s00440-013-0506-z
  • 发表时间:
    2013-06-08
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Fredrik Johansson Viklund;Steffen Rohde;Carto Wong
  • 通讯作者:
    Carto Wong
Variation of the conformal radius
  • DOI:
    10.1007/bf02787758
  • 发表时间:
    2004-12-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Steffen Rohde;Michel Zinsmeister
  • 通讯作者:
    Michel Zinsmeister

Steffen Rohde的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steffen Rohde', 18)}}的其他基金

Complex Analysis and Random Geometry
复杂分析和随机几何
  • 批准号:
    2350481
  • 财政年份:
    2024
  • 资助金额:
    $ 37.37万
  • 项目类别:
    Standard Grant
Conformal Welding of Discs and Trees
圆盘和树木的保形焊接
  • 批准号:
    1954674
  • 财政年份:
    2020
  • 资助金额:
    $ 37.37万
  • 项目类别:
    Standard Grant
Loewner Energy and Conformal Welding in Complex Analysis
复杂分析中的 Loewner 能量和保形焊接
  • 批准号:
    1700069
  • 财政年份:
    2017
  • 资助金额:
    $ 37.37万
  • 项目类别:
    Continuing Grant
Conformal Maps and Planar Graphs
共形图和平面图
  • 批准号:
    1362169
  • 财政年份:
    2014
  • 资助金额:
    $ 37.37万
  • 项目类别:
    Continuing Grant
Loewner Evolutions and Random Maps
Loewner 演化和随机地图
  • 批准号:
    1068105
  • 财政年份:
    2011
  • 资助金额:
    $ 37.37万
  • 项目类别:
    Continuing Grant
Conference on "Conformal maps, probability and physics"
“共形图、概率和物理”会议
  • 批准号:
    1007391
  • 财政年份:
    2010
  • 资助金额:
    $ 37.37万
  • 项目类别:
    Standard Grant
Geometric Function Theory and Loewner Evolutions
几何函数理论和勒纳演化
  • 批准号:
    0501726
  • 财政年份:
    2005
  • 资助金额:
    $ 37.37万
  • 项目类别:
    Standard Grant
Workshop on Percolation, SLE, and Related Topics
渗滤、SLE 及相关主题研讨会
  • 批准号:
    0532665
  • 财政年份:
    2005
  • 资助金额:
    $ 37.37万
  • 项目类别:
    Standard Grant
Collaborative Research: FRG: Geometric Function Theory: From Complex Functions to Quasiconformal Geometry and Nonlinear Analysis
合作研究:FRG:几何函数理论:从复杂函数到拟共形几何和非线性分析
  • 批准号:
    0244408
  • 财政年份:
    2003
  • 资助金额:
    $ 37.37万
  • 项目类别:
    Standard Grant
Geometric Function Theory and Dynamics
几何函数理论与动力学
  • 批准号:
    9970398
  • 财政年份:
    1999
  • 资助金额:
    $ 37.37万
  • 项目类别:
    Standard Grant

相似海外基金

Supporting Architectural and technological Network evolutions through an intelligent, secured and twinning enabled Open eXperimentation facility
通过智能、安全且支持孪生的开放实验设施支持架构和技术网络的发展
  • 批准号:
    10062167
  • 财政年份:
    2023
  • 资助金额:
    $ 37.37万
  • 项目类别:
    EU-Funded
Conference: 2023 Molecular Mechanisms in Evolutions GRC and GRS: Genetic and Phenotypic Evolution at the Organismal, Cellular and Molecular Levels
会议:2023进化中的分子机制GRC和GRS:有机体、细胞和分子水平的遗传和表型进化
  • 批准号:
    2328755
  • 财政年份:
    2023
  • 资助金额:
    $ 37.37万
  • 项目类别:
    Standard Grant
Investigating Reciprocal Interactions and Evolutions of Glioblastoma with Brain Microenvironment using 3D Organoid
使用 3D 类器官研究胶质母细胞瘤与脑微环境的相互作用和演变
  • 批准号:
    495009
  • 财政年份:
    2023
  • 资助金额:
    $ 37.37万
  • 项目类别:
    Operating Grants
Value Changes and Recent Evolutions of Morality Politics - Comparative Analysis of Europe and Japan
道德政治的价值变迁与近期演变——欧洲与日本的比较分析
  • 批准号:
    22KF0349
  • 财政年份:
    2023
  • 资助金额:
    $ 37.37万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Atomic-Level Structure and Dynamic Evolutions in Cobalt-Free High-Performance Sodium-Ion Battery Cathode
无钴高性能钠离子电池正极的原子级结构和动态演化
  • 批准号:
    EP/Y024958/1
  • 财政年份:
    2023
  • 资助金额:
    $ 37.37万
  • 项目类别:
    Fellowship
Canonical metrics and geometric evolutions
规范度量和几何演化
  • 批准号:
    RGPIN-2016-03708
  • 财政年份:
    2021
  • 资助金额:
    $ 37.37万
  • 项目类别:
    Discovery Grants Program - Individual
Detecting genome duplications in palynological records: As a case study to understand genome evolutions in light of the Earth history
检测孢粉学记录中的基因组重复:作为根据地球历史了解基因组进化的案例研究
  • 批准号:
    21K19300
  • 财政年份:
    2021
  • 资助金额:
    $ 37.37万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
New Quaternary MAX Phase Thin Films: Understanding the Thermally Induced Microstructural Evolutions and Reaction Mechanisms in Nanostructured Multilayers via Experimental Combinatorial Study
新型四元 MAX 相薄膜:通过实验组合研究了解纳米结构多层膜中的热致微观结构演化和反应机制
  • 批准号:
    464878149
  • 财政年份:
    2021
  • 资助金额:
    $ 37.37万
  • 项目类别:
    Research Grants
Linking microstructural evolutions across the scales of granular failure
将颗粒失效范围内的微观结构演化联系起来
  • 批准号:
    FT200100884
  • 财政年份:
    2021
  • 资助金额:
    $ 37.37万
  • 项目类别:
    ARC Future Fellowships
Canonical metrics and geometric evolutions
规范度量和几何演化
  • 批准号:
    RGPIN-2016-03708
  • 财政年份:
    2020
  • 资助金额:
    $ 37.37万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了