Eisenstein Series, Operators and L-Functions
艾森斯坦级数、运算符和 L 函数
基本信息
- 批准号:0801029
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0801029 Eisenstein Series, Operators and L-Functions Dr. Lagarias proposes to investigate various analytic problems related to Eisenstein series and L-functions in number theory. There are three topics. The first topic concerns the Lerch zeta function and its relation to Eisenstein series. The second topic concerns properties of certain de Branges spaces and associated operators attached to automorphic L-functions. A third topic is to investigate Fourier coefficients of various nonholomorphic Eisenstein series.This proposal is in the area of number theory. Number theory has in recent years has provided many useful applications in communications, coding theory and cryptography. Recent developments have observed parallels between problems in number theory, including the distribution of prime numbers, and various topics in mathematical physics. This proposal investigates possible connections of this kind. The problems considered may stimulate interactions between researchers in these fields. The proposer is training graduate students in related areas.
Lagarias博士提出研究数论中与爱森斯坦级数和l函数相关的各种解析问题。有三个主题。第一个主题是关于lach ζ函数及其与爱森斯坦级数的关系。第二个主题是关于自同构l -函数上的某些de brange空间和相关算子的性质。第三个课题是研究各种非纯爱森斯坦级数的傅里叶系数。这个建议属于数论领域。近年来,数论在通信、编码理论和密码学中提供了许多有用的应用。最近的发展已经观察到数论问题之间的相似之处,包括素数的分布,以及数学物理中的各种主题。本建议调查这类可能的联系。所考虑的问题可能会刺激这些领域的研究人员之间的互动。申请人正在培养相关领域的研究生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Lagarias其他文献
Products of extended binomial coefficients and their partial factorizations
- DOI:
10.1007/s11139-025-01128-0 - 发表时间:
2025-07-18 - 期刊:
- 影响因子:0.700
- 作者:
Lara Du;Jeffrey Lagarias;Wijit Yangjit - 通讯作者:
Wijit Yangjit
Jeffrey Lagarias的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Lagarias', 18)}}的其他基金
Zeta Integrals, Discrete Number Theory and Geometry
Zeta 积分、离散数论和几何
- 批准号:
1701576 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
Applications of Random Matrix Theory to Analytic Number Theory
随机矩阵理论在解析数论中的应用
- 批准号:
1701577 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Topics in number theory, dynamical systems and discrete geometry
数论、动力系统和离散几何主题
- 批准号:
1401224 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Continuing Grant
Topics in Number Theory and Geometry: Zeta Functions and Circle Packings
数论和几何主题:Zeta 函数和圆堆积
- 批准号:
1101373 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Continuing Grant
The Circle Method as an Interface of Arithmetic Geometry, Additive Combinatorics and Harmonic Analysis
圆法作为算术几何、加法组合学和调和分析的接口
- 批准号:
0601367 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
删失数据非线性分位数回归模型的series估计及其实证分析中的应用
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Closed Intertwining Operators on locally algebraic principal series
局部代数主级数上的闭合交织算子
- 批准号:
221604069 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Fellowships
1. Higher transcendental functions and their applications 2. Linear operators and geometric function theory 3. Orthogonal polynomials and basic hypergeometric series
1. 高等超越函数及其应用 2. 线性算子和几何函数论 3. 正交多项式和基本超几何级数
- 批准号:
7353-1998 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
1. Higher transcendental functions and their applications 2. Linear operators and geometric function theory 3. Orthogonal polynomials and basic hypergeometric series
1. 高等超越函数及其应用 2. 线性算子和几何函数论 3. 正交多项式和基本超几何级数
- 批准号:
7353-1998 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
1. Higher transcendental functions and their applications 2. Linear operators and geometric function theory 3. Orthogonal polynomials and basic hypergeometric series
1. 高等超越函数及其应用 2. 线性算子和几何函数论 3. 正交多项式和基本超几何级数
- 批准号:
7353-1998 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
1. Higher transcendental functions and their applications 2. Linear operators and geometric function theory 3. Orthogonal polynomials and basic hypergeometric series
1. 高等超越函数及其应用 2. 线性算子和几何函数论 3. 正交多项式和基本超几何级数
- 批准号:
7353-1998 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Special functions and their applications; Geometric function theory and linear operators; orthogonal polynomials and basic hypergeometric series
特殊函数及其应用;
- 批准号:
7353-1995 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Special functions and their applications; Geometric function theory and linear operators; orthogonal polynomials and basic hypergeometric series
特殊函数及其应用;
- 批准号:
7353-1995 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Special functions and their applications; Geometric function theory and linear operators; orthogonal polynomials and basic hypergeometric series
特殊函数及其应用;
- 批准号:
7353-1995 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
1. Orthogonal polynomials and basic hypergeometric series; 2. Geometric function theory and linear operators; 3. Special functions and their applications
1.正交多项式和基本超几何级数;
- 批准号:
7353-1992 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
1. Orthogonal polynomials and basic hypergeometric series; 2. Geometric function theory and linear operators; 3. Special functions and their applications
1.正交多项式和基本超几何级数;
- 批准号:
7353-1992 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual