Topics in number theory, dynamical systems and discrete geometry
数论、动力系统和离散几何主题
基本信息
- 批准号:1401224
- 负责人:
- 金额:$ 32.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There have recently been many important interactions between number theory and other fields, including dynamical systems and discrete geometry. The connection of number theory with discrete geometry structures via packings leads to connections with problems in materials science. Problems in number theory involving zeta functions and distribution of primes have parallels with problems in mathematical physics. There are further connections of number theory with physical theories such as conformal field theory through modular forms. Number theory structure appears in some exactly solvable models of phase transitions in physical models. The proposal investigates several possible areas of contact between fields, which may lead to fruitful interactions with researchers in physics and material sciences. The grant will support the training of graduate students in these areas. Dr. Lagarias will investigate several independent topics interacting among these fields. The first, and main, topic continues the investigation of the Lerch zeta function, which is a function of three variables, that on specializing variables yields the Hurwitz zeta function and Riemann zeta function. A connection is made with the representation theory of the Heisenberg group and related groups, and the project aims to connect it more closely to automorphic representations on various groups. A second topic concerns two exploratory projects; one concerns a certain family of virtual representations of the symmetric groups, which arises as a degenerate limit of splitting properties of polynomials (modulo p), associated to properties of the discriminant locus of the polynomial. It asks if there is an underlying geometric structure explaining the observed limit properties, possibly with an associated dynamical system. Another exploratory project studies polyharmonic modular forms, which are functions with modular invariance that are annihilated by a power of the Laplacian. A third topic is to investigate of circle packings on Riemann surfaces, a topic in the area of discrete geometry. It considers formulation of scaling limits of such packings in two directions, a complex variables limit and a Diophantine approximation limit. Whether or not this can be done precisely, special questions are proposed to initially investigate these areas, including study of surfaces having rigid packings with a finite number of circles.
最近,数论与其他领域之间发生了许多重要的相互作用,包括动力系统和离散几何。通过填充将数论与离散几何结构相联系导致了与材料科学中的问题的联系。数论中涉及Zeta函数和素数分布的问题与数学物理中的问题有相似之处。数论通过模形式与物理理论,如保形场理论有了进一步的联系。数论结构出现在一些物理模型中的相变精确可解模型中。该提案调查了几个可能的领域之间的接触,这可能会导致与物理学和材料科学的研究人员进行富有成效的互动。这笔补助金将用于支持研究生在这些领域的培训。拉加里亚斯博士将研究这些领域之间相互影响的几个独立话题。第一个也是主要的主题继续研究Lerch Zeta函数,它是一个三个变量的函数,在特殊变量上产生Hurwitz Zeta函数和Riemann Zeta函数。将海森堡群及其相关群的表示理论联系起来,旨在将其与各种群上的自同构表示更紧密地联系起来。第二个主题涉及两个探索性项目;一个是关于对称群的一族虚拟表示,它作为多项式(模p)的分裂性质的退化极限而产生,与多项式的判别轨迹的性质有关。它询问是否有一个潜在的几何结构来解释观察到的极限属性,可能与相关的动力系统有关。另一个探索性项目研究多调和模形式,它是具有模不变性的函数,它被拉普拉斯的幂所湮没。第三个主题是研究黎曼曲面上的圆填充,这是离散几何领域的一个主题。它考虑了这类填充在两个方向上的标度极限的公式,即复变量极限和丢番图逼近极限。无论能否准确地做到这一点,提出了一些特殊的问题来初步研究这些领域,包括研究具有有限个圆的刚性填充的曲面。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Lerch Zeta function III. Polylogarithms and special values
Lerch Zeta 函数 III。
- DOI:10.1186/s40687-015-0049-2
- 发表时间:2016
- 期刊:
- 影响因子:1.2
- 作者:Lagarias, Jeffrey C.;Li, Wen-Ching Winnie
- 通讯作者:Li, Wen-Ching Winnie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Lagarias其他文献
Products of extended binomial coefficients and their partial factorizations
- DOI:
10.1007/s11139-025-01128-0 - 发表时间:
2025-07-18 - 期刊:
- 影响因子:0.700
- 作者:
Lara Du;Jeffrey Lagarias;Wijit Yangjit - 通讯作者:
Wijit Yangjit
Jeffrey Lagarias的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Lagarias', 18)}}的其他基金
Zeta Integrals, Discrete Number Theory and Geometry
Zeta 积分、离散数论和几何
- 批准号:
1701576 - 财政年份:2017
- 资助金额:
$ 32.19万 - 项目类别:
Continuing Grant
Applications of Random Matrix Theory to Analytic Number Theory
随机矩阵理论在解析数论中的应用
- 批准号:
1701577 - 财政年份:2017
- 资助金额:
$ 32.19万 - 项目类别:
Standard Grant
Topics in Number Theory and Geometry: Zeta Functions and Circle Packings
数论和几何主题:Zeta 函数和圆堆积
- 批准号:
1101373 - 财政年份:2011
- 资助金额:
$ 32.19万 - 项目类别:
Continuing Grant
Eisenstein Series, Operators and L-Functions
艾森斯坦级数、运算符和 L 函数
- 批准号:
0801029 - 财政年份:2008
- 资助金额:
$ 32.19万 - 项目类别:
Continuing Grant
The Circle Method as an Interface of Arithmetic Geometry, Additive Combinatorics and Harmonic Analysis
圆法作为算术几何、加法组合学和调和分析的接口
- 批准号:
0601367 - 财政年份:2006
- 资助金额:
$ 32.19万 - 项目类别:
Continuing Grant
相似国自然基金
关于群上的短零和序列及其cross number的研究
- 批准号:11501561
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
堆垒基与Narkiewicz常数的研究
- 批准号:11226279
- 批准年份:2012
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
FcγR基因拷贝数和狼疮性肾炎相关研究
- 批准号:30801022
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
图的一般染色数与博弈染色数
- 批准号:10771035
- 批准年份:2007
- 资助金额:18.0 万元
- 项目类别:面上项目
相似海外基金
On the Liouville function in short intervals and further topics in analytic number theory
短区间内的刘维尔函数以及解析数论中的进一步主题
- 批准号:
567986-2022 - 财政年份:2022
- 资助金额:
$ 32.19万 - 项目类别:
Postdoctoral Fellowships
Topics in multiplicative and probabilistic number theory
乘法和概率数论主题
- 批准号:
RGPIN-2018-05699 - 财政年份:2022
- 资助金额:
$ 32.19万 - 项目类别:
Discovery Grants Program - Individual
Topics in Analytic Number Theory and Additive Combinatorics
解析数论和加法组合学主题
- 批准号:
2200565 - 财政年份:2022
- 资助金额:
$ 32.19万 - 项目类别:
Standard Grant
Topics in multiplicative and probabilistic number theory
乘法和概率数论主题
- 批准号:
RGPIN-2018-05699 - 财政年份:2021
- 资助金额:
$ 32.19万 - 项目类别:
Discovery Grants Program - Individual
Topics in multiplicative and probabilistic number theory
乘法和概率数论主题
- 批准号:
RGPIN-2018-05699 - 财政年份:2020
- 资助金额:
$ 32.19万 - 项目类别:
Discovery Grants Program - Individual
Topics in Algebraic Geometry and Number Theory
代数几何和数论专题
- 批准号:
2443753 - 财政年份:2020
- 资助金额:
$ 32.19万 - 项目类别:
Studentship
Topics in multiplicative and probabilistic number theory
乘法和概率数论主题
- 批准号:
RGPIN-2018-05699 - 财政年份:2019
- 资助金额:
$ 32.19万 - 项目类别:
Discovery Grants Program - Individual
Topics in Analytic Number Theory and Additive Combinatorics
解析数论和加法组合学主题
- 批准号:
1802224 - 财政年份:2018
- 资助金额:
$ 32.19万 - 项目类别:
Standard Grant