Applications of Random Matrix Theory to Analytic Number Theory

随机矩阵理论在解析数论中的应用

基本信息

项目摘要

This project explores several problems at the intersection of random matrix theory and analytic number theory. The first of these areas historically draws much of its impetus from mathematical physics and broadly concerns statistical patterns found in matrices where entries have been chosen at random; ideas from this area have found applications in a large number of subjects ranging from epidemiology to telecommunications. The second area makes use of mathematical analysis to study properties of the integers -- for instance to study the distribution of primes or the way large integers tend to factor; these are natural problems which mathematicians have been interested in for a long time and which have applications to data-security. The two areas were first linked by the surprising and still largely conjectural resemblance between the local distribution of zeros of L-functions -- these are certain functions which are of central interest in analytic number theory -- and the distribution of eigenvalues of a random matrix. In fact, distributions of this sort have been found in a diverse range of situations, and it is an important problem to understand why these distributions arise so universally. In more detail, the project consists of two related parts. The first is to study the link between zeros of L-functions and eigenvalues of random matrices by making use of combinatorial decompositions of arithmetic functions; analogous decompositions can be found in a function field setting and have shed light on related problems there. The second part is to investigate the extent to which certain pseudo-random walks on compact matrix groups equidistribute in the same fashion as classical random walks do; results pertaining to this second project have recently been used to resolve open questions about the distribution of certain trigonometric polynomials. The two components of the project share in common the use they make of combinatorial representation theory and also their study of sequences of random variables that are weakly dependent, with a dependence characterized by arithmetic/combinatorial considerations.
本课题探讨随机矩阵理论与解析数论的交叉问题。历史上,第一个领域从数学物理中获得了很大的推动力,并且广泛关注随机选择条目的矩阵中的统计模式;这一领域的思想已经在从流行病学到电信等许多学科中得到了应用。第二个领域利用数学分析来研究整数的性质——例如,研究质数的分布或大整数倾向于因式分解的方式;这些都是数学家长期以来一直感兴趣的自然问题,它们在数据安全方面也有应用。这两个领域首先是由l函数的局部零分布与随机矩阵的特征值分布之间令人惊讶的相似性联系起来的,这在很大程度上仍然是推测性的。l函数是解析数论中感兴趣的某些函数。事实上,这种分布已经在各种各样的情况下被发现,理解为什么这些分布如此普遍是一个重要的问题。更详细地说,该项目由两个相关的部分组成。一是利用算术函数的组合分解研究l函数的零点与随机矩阵的特征值之间的联系;类似的分解可以在函数字段设置中找到,并揭示了相关问题。第二部分是研究紧矩阵群上的某些伪随机漫步在多大程度上与经典随机漫步一样是等分布的;与第二个项目有关的结果最近被用来解决关于某些三角多项式分布的开放性问题。这个项目的两个组成部分共同使用组合表示理论,以及他们对弱相关随机变量序列的研究,这种依赖以算术/组合考虑为特征。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Higher correlations and the alternative hypothesis
更高的相关性和替代假设
THE DE BRUIJN–NEWMAN CONSTANT IS NON-NEGATIVE
DE BRUIJN–NEWMAN 常数为非负值
  • DOI:
    10.1017/fmp.2020.6
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    RODGERS, BRAD;TAO, TERENCE
  • 通讯作者:
    TAO, TERENCE
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Lagarias其他文献

Products of extended binomial coefficients and their partial factorizations
  • DOI:
    10.1007/s11139-025-01128-0
  • 发表时间:
    2025-07-18
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Lara Du;Jeffrey Lagarias;Wijit Yangjit
  • 通讯作者:
    Wijit Yangjit

Jeffrey Lagarias的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Lagarias', 18)}}的其他基金

Zeta Integrals, Discrete Number Theory and Geometry
Zeta 积分、离散数论和几何
  • 批准号:
    1701576
  • 财政年份:
    2017
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Continuing Grant
Topics in number theory, dynamical systems and discrete geometry
数论、动力系统和离散几何主题
  • 批准号:
    1401224
  • 财政年份:
    2014
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Continuing Grant
Topics in Number Theory and Geometry: Zeta Functions and Circle Packings
数论和几何主题:Zeta 函数和圆堆积
  • 批准号:
    1101373
  • 财政年份:
    2011
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Continuing Grant
Eisenstein Series, Operators and L-Functions
艾森斯坦级数、运算符和 L 函数
  • 批准号:
    0801029
  • 财政年份:
    2008
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Continuing Grant
The Circle Method as an Interface of Arithmetic Geometry, Additive Combinatorics and Harmonic Analysis
圆法作为算术几何、加法组合学和调和分析的接口
  • 批准号:
    0601367
  • 财政年份:
    2006
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Continuing Grant
L-functions and Operators
L 函数和运算符
  • 批准号:
    0500555
  • 财政年份:
    2005
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Continuing Grant

相似海外基金

EAGER: IMPRESS-U: Random Matrix Theory and its Applications to Deep Learning
EAGER:IMPRESS-U:随机矩阵理论及其在深度学习中的应用
  • 批准号:
    2401227
  • 财政年份:
    2024
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Some Applications of Free Probability and Random Matrix Theory
LEAPS-MPS:自由概率和随机矩阵理论的一些应用
  • 批准号:
    2316836
  • 财政年份:
    2023
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Standard Grant
Applications of random matrix theory in analytic number theory
随机矩阵理论在解析数论中的应用
  • 批准号:
    RGPIN-2019-04888
  • 财政年份:
    2022
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Discovery Grants Program - Individual
Random Matrix Theory And Its Applications
随机矩阵理论及其应用
  • 批准号:
    575695-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Applications of random matrix theory in analytic number theory
随机矩阵理论在解析数论中的应用
  • 批准号:
    RGPIN-2019-04888
  • 财政年份:
    2021
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of random matrix theory in analytic number theory
随机矩阵理论在解析数论中的应用
  • 批准号:
    RGPIN-2019-04888
  • 财政年份:
    2020
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Numerical Linear Algebra, Random Matrix Theory and Applications
职业:数值线性代数、随机矩阵理论及应用
  • 批准号:
    1945652
  • 财政年份:
    2019
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Continuing Grant
Applications of random matrix theory in analytic number theory
随机矩阵理论在解析数论中的应用
  • 批准号:
    DGECR-2019-00360
  • 财政年份:
    2019
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Discovery Launch Supplement
Applications of random matrix theory in analytic number theory
随机矩阵理论在解析数论中的应用
  • 批准号:
    RGPIN-2019-04888
  • 财政年份:
    2019
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Numerical Linear Algebra, Random Matrix Theory and Applications
职业:数值线性代数、随机矩阵理论及应用
  • 批准号:
    1753185
  • 财政年份:
    2018
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了