Combinatorics and Number Theory IV

组合数学与数论 IV

基本信息

  • 批准号:
    0801096
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

This proposal contains three projects, in number theory and itsapplications to combinatorics. The first project concerns thearithmetic of modular forms for noncongruence subgroups. Fornoncongruence subgroups whose associated modular curves have a modelover the rationals, Atkin and Swinnerton-Dyer suggested veryinteresting congruence relations on the Fourier coefficients of cuspforms which are meant to replace the Hecke operators. On the otherhand, Scholl has attached Galois representations to the space ofnoncongruence cusp forms. The ASD congruences together with themodularity of Scholl representations yield extremely interestingcongruence relations between the Fourier coefficients of congruenceand noncongruence forms. Some examples were constructed by the PIand her coauthors. Continuing her joint work with coauthors, the PIplans to apply the modularity lifting theorems to investigate whenScholl representations arise from Hilbert modular forms, and to usethe modularity result and ASD congruence relations to establish theconjecture which says that the Fourier coefficients of genuinelyalgebraic noncongruence forms have unbounded denominators. Thesecond project is to construct zeta functions of complexes arisingfrom finite quotients of the Bruhat-Tits buildings. Such zetafunction should be a rational function which encodes topological andspectral information of the complex, and which satisfies the RiemannHypothesis if and only if the complex is Ramanujan. When dimensionis one, this is the Ihara zeta function attached to a graph. In avery recent work, the PI and a PhD student did the 2-dimensionalcase. The PI proposes to explore the general case. The third projectconcerns low-density parity-check (LDPC) codes. The LDPC codes areequipped with very efficient decoding algorithms, which make themhighly desirable in real world applications. The source of decodingerrors is the pseudo-codewords. One way to understand thesepseudo-codewords is to construct a suitable infinite series, calleda zeta function, with each term corresponding to a pseudo-codeword.Such zeta function should be a rational function with goodcombinatorial property. This was done indirectly in a joint paper ofthe PI. The PI proposes to pursue a more direct approach.It has been the PI's long term research goal to do fundamentalresearch in number theory and to seek applications of number theoryto combinatorics and coding theory, especially to solve real worldproblems. The study of interplay between these areas has turned outto be quite fruitful. This proposal is a continuation of the PI's effort to pursue the same general theme. Part of the research will be carried out by the PI's Ph Dstudents. The results from this proposal will be disseminatedbroadly through the talks given by the PI in seminars, colloquia,conferences, short courses, and workshops. They will also beincorporated in the graduate courses taught by the PI. Weeklyinformal seminars will be conducted to integrate research witheducation and teaching. A conference is planned in 2010 todisseminate results from this project.
这个建议包含三个项目,在数论及其应用组合。第一个项目是关于非同余子群的模形式的算法。Atkin和Swinnerton-Dyer对模曲线在有理数上有模的非同余子群提出了非常有趣的尖形的Fourier系数的同余关系,用来代替Hecke算子。另一方面,Scholl把伽罗瓦表示附加到非全等尖点形式空间上。ASD同余与Scholl表示的模性一起产生了非常有趣的同余和非同余形式的傅立叶系数之间的同余关系。一些例子是由PI和她的合著者构建的。继续她与合著者的联合工作,PI计划应用模块提升定理来研究Scholl表示何时从Hilbert模块形式中产生,并使用模块结果和ASD同余关系来建立一个猜想,该猜想认为非线性代数非同余形式的傅立叶系数具有无界的算子。第二个项目是从Bruhat-Tits建筑物的有限体积中构造复合体的zeta函数。这样的zeta函数应该是一个有理函数,它编码的拓扑和光谱信息的复杂性,并满足黎曼假设当且仅当该复杂性是Ramanujan。当维数为1时,这是Ihara zeta函数附加到图上。在最近的工作中,PI和一个博士生做了二维的案例。PI建议探索一般情况。第三个项目是关于低密度奇偶校验(LDPC)码。LDPC码具有非常高效的译码算法,这使得它在真实的世界中有着非常高的应用价值。解码错误的来源是伪码字。理解伪码字的一种方法是构造一个合适的无穷级数,称为zeta函数,每一项对应一个伪码字,这样的zeta函数应该是一个具有良好组合性质的有理函数。这是在PI的联合文件中间接完成的。PI主张追求一种更直接的方法,在数论中做基础研究,寻求数论在组合数学和编码理论中的应用,特别是解决真实的世界问题,一直是PI的长期研究目标。对这些区域之间相互作用的研究已经取得了丰硕的成果。本建议是PI为追求同一总主题所作努力的延续。部分研究将由PI的博士生进行。这一建议的结果将通过PI在研讨会、座谈会、会议、短期课程和讲习班上的演讲广泛传播。他们也将被纳入由PI教授的研究生课程。每周将举行非正式研讨会,以整合研究与教育和教学。计划于2010年召开一次会议,以传播该项目的成果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wen-Ching Li其他文献

Wen-Ching Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wen-Ching Li', 18)}}的其他基金

Impact of Computation on Number Theory, July 30 - August 3, 2014
计算对数论的影响,2014 年 7 月 30 日至 8 月 3 日
  • 批准号:
    1414219
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
International Conference on Galois Representations, Automorphic Forms and Shimura Varieties
伽罗瓦表示、自同构形式和 Shimura 簇国际会议
  • 批准号:
    1134046
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Combinatorics and Number Theory V
组合学与数论 V
  • 批准号:
    1101368
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Workshop on Graphs and Arithmetic
图表与算术研讨会
  • 批准号:
    1007973
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Combinatorics and Number Theory III
组合数学与数论 III
  • 批准号:
    0457574
  • 财政年份:
    2005
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Combinatorics and Number Theory II
组合数学与数论 II
  • 批准号:
    9970651
  • 财政年份:
    1999
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Combinatorics and Number Theory
组合学和数论
  • 批准号:
    9622938
  • 财政年份:
    1996
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Number Theory, Combinatorics and Representation Theory (Mathematics)
数论、组合学和表示论(数学)
  • 批准号:
    9003126
  • 财政年份:
    1991
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Number Theory, Combinatorics, and Representation Theory
数学科学:数论、组合学和表示论
  • 批准号:
    8404083
  • 财政年份:
    1984
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Analytic, Algebraic and Combinatorial Number Theory
解析数论、代数数论和组合数论
  • 批准号:
    8101943
  • 财政年份:
    1981
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant

相似国自然基金

关于群上的短零和序列及其cross number的研究
  • 批准号:
    11501561
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
  • 批准号:
    EP/Y014030/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Conference: Solvable Lattice Models, Number Theory and Combinatorics
会议:可解格子模型、数论和组合学
  • 批准号:
    2401464
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Conference: Number Theory and Combinatorics in Duluth
会议:德卢斯数论与组合学
  • 批准号:
    2309811
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Computability and Decision Procedures for Number Theory and Combinatorics
数论和组合学的可计算性和决策程序
  • 批准号:
    RGPIN-2018-04118
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorics of Words and Number Theory
单词组合学和数论
  • 批准号:
    RGPIN-2020-04685
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Analytic Number Theory and Additive Combinatorics
解析数论和加法组合学主题
  • 批准号:
    2200565
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Entropy methods in Additive Combinatorics and Analytic Number Theory
加法组合学和解析数论中的熵方法
  • 批准号:
    2580868
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Studentship
Computability and Decision Procedures for Number Theory and Combinatorics
数论和组合学的可计算性和决策程序
  • 批准号:
    RGPIN-2018-04118
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Decoupling Theory, Oscillatory Integral Theory, and Their Applications in Analytic Number Theory and Combinatorics
职业:解耦理论、振荡积分理论及其在解析数论和组合学中的应用
  • 批准号:
    2044828
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Combinatorics of Words and Number Theory
单词组合学和数论
  • 批准号:
    RGPIN-2020-04685
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了