Combinatorics and Number Theory V
组合学与数论 V
基本信息
- 批准号:1101368
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal aims to investigate problems from two diverse areas in number theory andcombinatorics.The first project concerns arithmetic properties of modular forms onnoncongruence subgroups. To these forms Scholl attached motivic Galoisrepresentations, which are expected to be connected to automorphic forms according to Langlands philosophy. These Galois representations, unliketheir classical counterpart, cannot be broken into pieces in general,and should be related to automorphic forms on symplectic and orthogonal groups.Building upon her past work, PI will investigate the (potential) automorphyof Scholl representations with special symmetries, exploit consequencesof automorphy, and study congruence properties ofFourier coefficients of noncongruence forms as proposed by Atkin and Swinnerton-Dyer.The second project is to study the interplay between combinatorics,group theory and number theory through associated zeta functions. Zeta functions of varieties defined over finite fields are well-understood.Their most well-known properties are described by Weil conjectures, established in early1970's. Finite simplicial complexes are combinatorial analog of such varieties. They are expected to have zeta functions enjoying similar properties, except that Riemann Hypothesis will hold only for complexes which are spectrally optimal. One-dimensionalcomplexes are graphs, whose zeta functions have been studied since the work of Ihara in 1966.The zeta functions for higher dimensional complexes became known only recentlywhen PI and her students obtained closed form expressions for zeta functions ofcomplexes arising as quotients of the buildings of certain rank-2 Chevalley groups over p-adic fields. The approaches are mostly representation-theoretic. The PI proposes to find zeta identities for complexes arising from other groups. She also intends to explore combinatorial interpretations of these identities using the Selberg trace formula, with an eye towards establishing a connection between complex zeta functions and automorphic forms.It has been the PI's long term research goal to do fundamentalresearch in number theory and to seek applications of number theoryto combinatorics and to solve real world problems. The study of interplay between these areas has turned out to be quite fruitful. This proposal is a continuation ofthe PI's effort to pursue the same general theme. Part of the research will be carried out by PI's Ph.D. students. The results from this proposal will be disseminatedbroadly through the talks given by the PI in seminars, colloquia,conferences, short courses, and workshops. They will also beincorporated in the graduate courses to be offered by the PI. Weeklyinformal seminars will be conducted to integrate research witheducation and teaching. The PI also plans to co-organize a conference in 2013 at Banffto disseminate results related to this proposal obtained by her and her students.
本计画主要研究数论与组合学两个不同领域的问题:第一个计画是关于非全等子群上模形式的算术性质。这些形式肖尔重视motivic伽罗瓦表示,预计将连接到自守形式根据朗兰兹哲学。这些伽罗瓦表示,不像他们的经典对应物,不能被分解成碎片一般,应该与自守形式的辛和正交群。在她过去的工作的基础上,PI将研究(潜在的)具有特殊对称性的Scholl表示的自同构,利用自同构的结果,研究Atkin和Swinnerton-Dyer提出的非全等形式的Fourier系数的全等性质。第二个项目是研究组合数学之间的相互作用,群论和数论通过相关的zeta函数。定义在有限域上的簇的Zeta函数是很好理解的,它们最著名的性质由20世纪70年代初建立的Weil定理描述。有限单纯复形是这些变种的组合类似物。他们预计有zeta函数享有类似的性质,除了黎曼假设将只适用于复杂的光谱最佳。一维复形是一种图形,自1966年Ihara的工作以来,人们一直在研究其zeta函数。高维复形的zeta函数直到最近PI和她的学生获得了p-adic域上某些秩为2的Chevalley群的建筑物的导数所产生的复形的zeta函数的封闭形式表达式后才为人所知。这些方法大多是代表理论。PI建议为来自其他群体的复合物找到Zeta身份。她还打算探索组合解释这些身份使用塞尔伯格迹公式,着眼于建立复杂的zeta函数和自守forms.It之间的连接一直是PI的长期研究目标做fundamentalresearch数论和寻求应用数论组合和解决真实的世界问题。对这些领域之间相互作用的研究已证明是相当富有成果的。这一建议是PI继续努力追求相同的总主题。部分研究将由PI的博士进行。学生这一建议的结果将通过PI在研讨会、座谈会、会议、短期课程和讲习班上的演讲广泛传播。他们也将被纳入研究生课程将提供的PI。每周将举行非正式研讨会,以整合研究与教育和教学。PI还计划于2013年在班夫共同组织一次会议,以传播她和她的学生获得的与该提案有关的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wen-Ching Li其他文献
Wen-Ching Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wen-Ching Li', 18)}}的其他基金
Impact of Computation on Number Theory, July 30 - August 3, 2014
计算对数论的影响,2014 年 7 月 30 日至 8 月 3 日
- 批准号:
1414219 - 财政年份:2014
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
International Conference on Galois Representations, Automorphic Forms and Shimura Varieties
伽罗瓦表示、自同构形式和 Shimura 簇国际会议
- 批准号:
1134046 - 财政年份:2011
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Number Theory, Combinatorics and Representation Theory (Mathematics)
数论、组合学和表示论(数学)
- 批准号:
9003126 - 财政年份:1991
- 资助金额:
$ 12万 - 项目类别:
Continuing grant
Mathematical Sciences: Number Theory, Combinatorics, and Representation Theory
数学科学:数论、组合学和表示论
- 批准号:
8404083 - 财政年份:1984
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Analytic, Algebraic and Combinatorial Number Theory
解析数论、代数数论和组合数论
- 批准号:
8101943 - 财政年份:1981
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
相似国自然基金
关于群上的短零和序列及其cross number的研究
- 批准号:11501561
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Research Grant
Conference: Solvable Lattice Models, Number Theory and Combinatorics
会议:可解格子模型、数论和组合学
- 批准号:
2401464 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Conference: Number Theory and Combinatorics in Duluth
会议:德卢斯数论与组合学
- 批准号:
2309811 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Combinatorics of Words and Number Theory
单词组合学和数论
- 批准号:
RGPIN-2020-04685 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Computability and Decision Procedures for Number Theory and Combinatorics
数论和组合学的可计算性和决策程序
- 批准号:
RGPIN-2018-04118 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Topics in Analytic Number Theory and Additive Combinatorics
解析数论和加法组合学主题
- 批准号:
2200565 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Entropy methods in Additive Combinatorics and Analytic Number Theory
加法组合学和解析数论中的熵方法
- 批准号:
2580868 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Studentship
Computability and Decision Procedures for Number Theory and Combinatorics
数论和组合学的可计算性和决策程序
- 批准号:
RGPIN-2018-04118 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Decoupling Theory, Oscillatory Integral Theory, and Their Applications in Analytic Number Theory and Combinatorics
职业:解耦理论、振荡积分理论及其在解析数论和组合学中的应用
- 批准号:
2044828 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Combinatorics of Words and Number Theory
单词组合学和数论
- 批准号:
RGPIN-2020-04685 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual