Analysis and Geometry of Nonlinear PDEs
非线性偏微分方程的分析和几何
基本信息
- 批准号:0801090
- 负责人:
- 金额:$ 23.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-01 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In recent years, the analysis and geometry of sub-Riemannian spaces has received increasing attention. The quintessential examples of sub-Riemannian settings are the so-called Carnot groups, whose fundamental role in analysis was first highlighted by E. M. Stein. They now occupy a central position not only in such mathematical areas as hypoelliptic partial differential equations, harmonic analysis, and CR geometric function theory, but also in the applied sciences (e.g., mathematical finance, mechanical engineering, neurophysiology of the brain). The most distinctive feature of sub-Riemannian spaces is that the metric structure can be viewed as a constrained geometry, where motion is only possible along a prescribed set of directions, changing from point to point. The principal investigator has a long-term project aimed at exploring geometric and analytic properties of these structures. More specifically, she proposes to continue her study of the Bernstein problem and of the regularity of minimal surfaces in Carnot groups, to investigate subelliptic boundary value problems, and to develop a regularity theory for fully nonlinear equations of Monge-Ampere type. Another area of interest in this project is the investigation of elliptic and parabolic free boundary problems naturally arising in the theory of flame propagation. The principal investigator also intends to study a class of minimization problems, in which the relevant functional is modeled after the one introduced by Alt and Caffarelli. One of the main objectives of the proposed research is to prove regularity properties of the free boundary. The necessary tools from harmonic analysis and partial differential equations for the study of these problems will be developed concurrently. Finally, motivated by the striking analogy between the theories of minimal surfaces and of free boundaries in the Euclidean setting, the PI plans to merge her different lines of research into a yet quite unexplored area, namely, the study of free boundary problems (both of obstacle and Alt-Caffarelli type) in Carnot groups. The principal investigator will integrate her research plan with several educational, mentoring, and outreach activities. This project will conduct research that lies at the interface of calculus of variations, partial differential equations, and geometric measure theory. The focus is on the study of analytic and geometric properties of solutions to variational inequalities and partial differential equations involving a system of noncommuting vector fields. The problems under consideration not only arise in a variety of mathematical contexts (e.g., optimal control theory, mathematical finance, and geometry), but also are of interest in other fields such as mechanical engineering, robotics, and neurophysiology. Another proposed research area concerns free boundary problems, which naturally arise in physics and engineering when a conserved quantity or relation changes discontinuously across some value of the variables under consideration. The free boundary appears, for instance, as the interface between a fluid and the air, or between water and ice. Part of the project aims at studying regularity properties of the free boundary in burnt-unburnt mixtures. The results of this investigation will lead to a better understanding of the models, to the improvement of simulation methods, and ultimately to a precise description of how flames propagate in nonhomogeneous media. Several elements of this project find their motivations in the applied sciences. On the other hand, the solutions to these probelms involve an interplay of ideas from different areas of analysis and geometry. It is conceivable that all these different fields will benefit from this synergy. The principal investigator is committed to the training of future generations of mathematicians, and to increasing the representation of women in the scientific community, via the organization of a variety of educational and mentoring activities for graduate, undergraduate, and K-12 students.
近年来,次黎曼空间的分析和几何学受到了越来越多的关注。亚黎曼背景的典型例子是所谓的卡诺群,它在分析中的基本作用首先由E。M.斯坦它们现在不仅在亚椭圆偏微分方程、调和分析和CR几何函数理论等数学领域,而且在应用科学(例如,数学金融学、机械工程学、大脑神经生理学)。次黎曼空间最显著的特征是,度量结构可以被看作是一个受约束的几何,其中运动只可能沿着一组指定的方向沿着,从点到点变化。首席研究员有一个长期项目,旨在探索这些结构的几何和分析特性。更具体地说,她建议继续她的研究的伯恩斯坦问题和规律性的最小表面的卡诺集团,调查次椭圆边值问题,并制定了规律性理论完全非线性方程的蒙赫安培型。在这个项目中感兴趣的另一个领域是椭圆和抛物线的自由边界问题自然产生的火焰传播理论的调查。主要研究者还打算研究一类最小化问题,其中相关的功能是仿照Alt和Caffarelli介绍的。所提出的研究的主要目标之一是证明自由边界的正则性。从调和分析和偏微分方程的研究这些问题的必要工具将同时开发。最后,出于惊人的相似性之间的理论最小曲面和自由边界的欧几里德设置,PI计划合并她的不同线的研究到一个尚未探索的领域,即研究自由边界问题(障碍和阿尔特-卡法雷利型)在卡诺集团。主要研究者将把她的研究计划与几个教育,指导和推广活动相结合。这个项目将进行研究,在变分法,偏微分方程和几何测量理论的接口。重点是研究涉及非交换向量场系统的变分不等式和偏微分方程解的解析和几何性质。所考虑的问题不仅出现在各种数学环境中(例如,最优控制理论、数学金融学和几何学),但也在其他领域如机械工程、机器人学和神经生理学中感兴趣。 另一个拟议的研究领域涉及自由边界问题,这自然会出现在物理学和工程学中,当一个守恒量或关系在考虑的变量的某个值上不连续变化时。例如,自由边界表现为流体和空气之间的界面,或水和冰之间的界面。 该项目的一部分旨在研究燃烧-未燃烧混合物中自由边界的正则性。这项调查的结果将导致更好地理解模型,改进模拟方法,并最终精确描述火焰如何在非均匀介质中传播。 这个项目的几个要素在应用科学中找到了它们的动机。另一方面,这些问题的解决方案涉及来自不同分析和几何领域的思想的相互作用。可以想象,所有这些不同的领域都将受益于这种协同作用。 首席研究员致力于培养未来几代数学家,并通过为研究生,本科生和K-12学生组织各种教育和指导活动,增加女性在科学界的代表性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donatella Danielli其他文献
Existence and regularity results for the penalized thin obstacle problem with variable coefficients
具有变系数的惩罚薄障碍问题的存在性和正则性结果
- DOI:
10.1016/j.jde.2025.02.084 - 发表时间:
2025-07-05 - 期刊:
- 影响因子:2.300
- 作者:
Donatella Danielli;Brian Krummel - 通讯作者:
Brian Krummel
The obstacle problem for a higher order fractional Laplacian
- DOI:
10.1007/s00526-023-02557-9 - 发表时间:
2023-08-23 - 期刊:
- 影响因子:2.000
- 作者:
Donatella Danielli;Alaa Haj Ali;Arshak Petrosyan - 通讯作者:
Arshak Petrosyan
Donatella Danielli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donatella Danielli', 18)}}的其他基金
Sixth Symposium on Analysis and Partial Differential Equations
第六届分析与偏微分方程研讨会
- 批准号:
1500796 - 财政年份:2015
- 资助金额:
$ 23.78万 - 项目类别:
Standard Grant
Analytic and geometric properties of variational inequalities and PDE
变分不等式和偏微分方程的解析和几何性质
- 批准号:
1101246 - 财政年份:2011
- 资助金额:
$ 23.78万 - 项目类别:
Continuing Grant
CAREER: Analytic and Geometric Aspects of Partial Differential Equations
职业:偏微分方程的解析和几何方面
- 批准号:
0239771 - 财政年份:2003
- 资助金额:
$ 23.78万 - 项目类别:
Continuing Grant
Free Boundaries, PDE's, and Geometric Measure Theory
自由边界、偏微分方程和几何测度理论
- 批准号:
0202801 - 财政年份:2002
- 资助金额:
$ 23.78万 - 项目类别:
Standard Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Modeling and Analysis of Nonlinear Geometry of Nonstationary Stochastic Models of Deep Neural Networks
深度神经网络非平稳随机模型的非线性几何建模与分析
- 批准号:
19H04163 - 财政年份:2019
- 资助金额:
$ 23.78万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometric Analysis in Conformal Geometry and Fully Nonlinear Elliptic Partial Differential Equations
共形几何和全非线性椭圆偏微分方程中的几何分析
- 批准号:
1612015 - 财政年份:2016
- 资助金额:
$ 23.78万 - 项目类别:
Standard Grant
Nonlinear elliptic and parabolic problems in analysis and geometry
分析和几何中的非线性椭圆和抛物线问题
- 批准号:
1001116 - 财政年份:2010
- 资助金额:
$ 23.78万 - 项目类别:
Standard Grant
Collaborative Research: FRG: Geometric Function Theory: From Complex Functions to Quasiconformal Geometry and Nonlinear Analysis
合作研究:FRG:几何函数理论:从复杂函数到拟共形几何和非线性分析
- 批准号:
0244408 - 财政年份:2003
- 资助金额:
$ 23.78万 - 项目类别:
Standard Grant
Collaborative Research: FRG: Geometric Function Theory: From Complex Functions to Quasiconformal Geometry and Nonlinear Analysis
合作研究:FRG:几何函数理论:从复杂函数到拟共形几何和非线性分析
- 批准号:
0244547 - 财政年份:2003
- 资助金额:
$ 23.78万 - 项目类别:
Standard Grant
Some nonlinear problems in analysis and geometry
分析和几何中的一些非线性问题
- 批准号:
0300477 - 财政年份:2003
- 资助金额:
$ 23.78万 - 项目类别:
Continuing Grant
Collaborative Research: FRG: Geometric Function Theory: From Complex Functions to Quasiconformal Geometry and Nonlinear Analysis
合作研究:FRG:几何函数理论:从复杂函数到拟共形几何和非线性分析
- 批准号:
0244297 - 财政年份:2003
- 资助金额:
$ 23.78万 - 项目类别:
Standard Grant
Collaborative Research: FRG: Geometric Function Theory: From Complex Functions to Quasiconformal Geometry and Nonlinear Analysis
合作研究:FRG:几何函数理论:从复杂函数到拟共形几何和非线性分析
- 批准号:
0244421 - 财政年份:2003
- 资助金额:
$ 23.78万 - 项目类别:
Standard Grant
GRK 283: Nonlinear Problems in Analysis, Geometry and Physics
GRK 283:分析、几何和物理中的非线性问题
- 批准号:
271585 - 财政年份:1996
- 资助金额:
$ 23.78万 - 项目类别:
Research Training Groups
Geometry and nonlinear analysis of Banach spaces
Banach 空间的几何和非线性分析
- 批准号:
7232-1989 - 财政年份:1992
- 资助金额:
$ 23.78万 - 项目类别:
Discovery Grants Program - Individual