Nonlinear elliptic and parabolic problems in analysis and geometry

分析和几何中的非线性椭圆和抛物线问题

基本信息

  • 批准号:
    1001116
  • 负责人:
  • 金额:
    $ 17.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

This project is concerned with the study of nonlinear elliptic and parabolic equations in connection with more complex problems of differential geometry and with physical applications. Such problems include the evolution of a hypersurface in Euclidean (N+1)-space by functions of its principal curvatures, the Ricci flow on both Riemannian and Lorentzian manifolds, the Yamabe flow on surfaces, and the Weyl problem with nonnegative Gaussian curvature. Most of the proposed problems involve equations that are either singular or degenerate, hence problems for which the classical results fail. New analytical techniques will be developed in the project.The project links a wide range of active fields of mathematics, in particular, nonlinear partial differential equations, geometry, and classical analysis. The proposed research activity on the geometry and regularity of degenerate nonlinear parabolic equations and free-boundary problems may lead to significant geometric and even topological applications. The principal investigator intends to study the applications of the mathematical problems to other disciplines such as quantum field theory, relativity theory, plasma physics, image analysis, and thin liquid film dynamics. Results will be disseminated to the research community at various meetings and by publication of research articles. New courses linking partial differential equations and geometric analysis for graduate students will be designed and implemented.
这个项目是关于非线性椭圆和抛物方程的研究,与更复杂的微分几何问题和物理应用有关。这些问题包括欧氏(N+1)空间中超曲面通过其主曲率的函数的演化、黎曼流形和洛伦兹流形上的Ricci流、曲面上的Yamabe流以及具有非负高斯曲率的Weyl问题。大多数提出的问题涉及的方程是奇异或退化,因此经典的结果失败的问题。该项目将开发新的分析技术。该项目将广泛的数学活跃领域联系起来,特别是非线性偏微分方程,几何和经典分析。退化的非线性抛物方程和自由边界问题的几何和正则性的拟议的研究活动可能会导致显着的几何,甚至拓扑应用。主要研究者打算研究数学问题在其他学科中的应用,如量子场论,相对论,等离子体物理,图像分析和薄液膜动力学。研究结果将在各种会议上和通过发表研究文章向研究界传播。将为研究生设计和实施连接偏微分方程和几何分析的新课程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Panagiota Daskalopoulos其他文献

Panagiota Daskalopoulos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Panagiota Daskalopoulos', 18)}}的其他基金

Nonlinear Geometric Flows: Ancient Solutions, Non-Compact Surfaces, and Regularity
非线性几何流:古老的解、非紧曲面和正则性
  • 批准号:
    1900702
  • 财政年份:
    2019
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Continuing Grant
Nonlinear Geometric Partial Differential Equations: Entire Solutions and Regularity
非线性几何偏微分方程:全解和正则性
  • 批准号:
    1600658
  • 财政年份:
    2016
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Continuing Grant
Nonlinear parabolic equations and related geometric problems
非线性抛物线方程及相关几何问题
  • 批准号:
    1266172
  • 财政年份:
    2013
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Continuing Grant
Workshop on Probability, Control and Finance
概率、控制与金融研讨会
  • 批准号:
    1204036
  • 财政年份:
    2012
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Standard Grant
Nonlinear Elliptic and Parabolic Problems
非线性椭圆和抛物线问题
  • 批准号:
    0701045
  • 财政年份:
    2007
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Continuing Grant
Nonlinear Diffusion Equations and Free-Boundary Problems
非线性扩散方程和自由边界问题
  • 批准号:
    0401126
  • 财政年份:
    2004
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Continuing Grant
Nonlinear Parabolic Equations: Free-Boundary Problems and Singular Behavior
非线性抛物型方程:自由边界问题和奇异行为
  • 批准号:
    0312006
  • 财政年份:
    2002
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Continuing Grant
Nonlinear Parabolic Equations: Free-Boundary Problems and Singular Behavior
非线性抛物型方程:自由边界问题和奇异行为
  • 批准号:
    0102252
  • 财政年份:
    2001
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Continuing Grant
Nonlinear Degenerate Parabolic Problems and Related Topics
非线性简并抛物线问题及相关主题
  • 批准号:
    9801304
  • 财政年份:
    1998
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Standard Grant
U.S.-Chile Cooperative Research: Nonlinear Degenerate Parabolic Problems
美国-智利合作研究:非线性简并抛物线问题
  • 批准号:
    9802406
  • 财政年份:
    1998
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Standard Grant

相似海外基金

Singular solutions for nonlinear elliptic and parabolic equations
非线性椭圆方程和抛物方程的奇异解
  • 批准号:
    DP220101816
  • 财政年份:
    2022
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Discovery Projects
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
  • 批准号:
    RGPIN-2018-03773
  • 财政年份:
    2022
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Discovery Grants Program - Individual
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
  • 批准号:
    RGPIN-2018-03773
  • 财政年份:
    2021
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Discovery Grants Program - Individual
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
  • 批准号:
    RGPIN-2018-03773
  • 财政年份:
    2020
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Discovery Grants Program - Individual
Qualitative Properties of Solutions of Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物方程解的定性性质
  • 批准号:
    1856491
  • 财政年份:
    2019
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Standard Grant
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
  • 批准号:
    RGPIN-2018-03773
  • 财政年份:
    2019
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of positive solutions for nonlinear elliptic and parabolic systems and their numerical computations
非线性椭圆抛物线系统正解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2014-03857
  • 财政年份:
    2018
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Discovery Grants Program - Individual
Fully Nonlinear Elliptic and Parabolic Equations
完全非线性椭圆和抛物线方程
  • 批准号:
    1800495
  • 财政年份:
    2018
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Continuing Grant
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
  • 批准号:
    RGPIN-2018-03773
  • 财政年份:
    2018
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of positive solutions for nonlinear elliptic and parabolic systems and their numerical computations
非线性椭圆抛物线系统正解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2014-03857
  • 财政年份:
    2017
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了