Collaborative Research: FRG: Geometric Function Theory: From Complex Functions to Quasiconformal Geometry and Nonlinear Analysis

合作研究:FRG:几何函数理论:从复杂函数到拟共形几何和非线性分析

基本信息

  • 批准号:
    0244297
  • 负责人:
  • 金额:
    $ 20.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-06-01 至 2007-05-31
  • 项目状态:
    已结题

项目摘要

FRGGeometric Function Theory is a broad area of mathematics that has its roots in the classical theory of analytic functions of one complex variable. From the very beginning this field has had connections to potential theory, partial differential equations, the calculus of variations, and geometric topology. The second half of the twentieth century brought about new areas like quasiconformal and quasiregular mappings, with links to nonlinear PDEs and harmonic analysis. The research group is planning to tackle some of the most important open problems in this broadly construed field by using our diverse strengths. Examples of the problems include understanding the integrability properties of derivatives of conformal mappings, finding criteria for recognizing metric spaces up to bi-Lipschitz or quasiconformal equivalence, further developing the theory of holomorphic curves and its quasiregular generalizations, and investigating algebraic conditions related to quasiconvexity of energy functionals. The intellectual merit of our activity will be found in a deepened understanding of fundamental questions in Geometric Function Theory, in an increase of the links to other fields of mathematics, and in a broader scope of possible applications.Core mathematics keeps reappearing outside its own realm with dramatic success and consequences. Recent examples range from cosmology (where deep topological issues arise regarding the proposed new dimensions for the universe) to material science (where deformation of elastic bodies are studied by methods of the Calculus of Variations) to engineering (where function theoretic methods have led to advances in control theory). The latter two examples are directly connected with the work of our research group, as are topological issues pertaining to the geometry of three dimensional spaces. Another new feature with possible far reaching reverberations is to use function theoretic methods in studying spaces that are not smooth in the classical sense; such spaces naturally occur when Riemannian structures degenerate and form singularities. The main strength of our group is that its members have common roots, but multifarious interests, so as to make advancement in and connections between separate fields. The broader impact of our activity will be the education of new scholars who understand the methods and techniques in the field, and who know how to find applications of their knowledge to other parts of mathematics and sciences. We will put great weight on passing on the important questions to the younger generation and on enabling them to perform independent research.
FRG几何函数论是一个广泛的数学领域,其根源在于一个复变量的解析函数的经典理论。 从一开始这个领域已经连接到潜在的理论,偏微分方程,变分法,和几何拓扑。 世纪的后半叶带来了新的领域,如拟共形和拟正则映射,与非线性偏微分方程和调和分析。 该研究小组正计划通过利用我们的各种优势来解决这个广泛解释的领域中一些最重要的开放问题。 这些问题的例子包括了解共形映射的导数的可积性,寻找识别度量空间到双Lipschitz或拟共形等价的准则,进一步发展全纯曲线理论及其拟正则推广,以及研究与能量泛函的拟凸性有关的代数条件。 我们的活动的智力价值将被发现在几何函数理论的基本问题的加深理解,在增加的联系到数学的其他领域,并在更广泛的范围内可能的应用.核心数学不断出现在自己的领域外与戏剧性的成功和后果.最近的例子从宇宙学(其中出现了关于宇宙的新维度的深层拓扑问题)到材料科学(其中弹性体的变形通过变分法进行研究)到工程学(其中函数论方法导致了控制理论的进步)。后两个例子与我们的研究小组的工作直接相关,就像与三维空间几何有关的拓扑问题一样。另一个新的功能与可能深远的反响是使用函数理论的方法在研究空间是不光滑的经典意义上,这样的空间自然发生时,黎曼结构退化,形成奇点。本集团的主要优势在于其成员拥有共同的根源,但兴趣多样,以便在不同的领域中取得进步并建立联系。我们的活动的更广泛的影响将是谁了解该领域的方法和技术的新学者的教育,谁知道如何找到他们的知识应用到数学和科学的其他部分。我们将非常重视将重要问题传递给年轻一代,并使他们能够进行独立的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tadeusz Iwaniec其他文献

${\cal H}^1$ -estimates of Jacobians by subdeterminants
  • DOI:
    10.1007/s00208-002-0341-5
  • 发表时间:
    2002-10-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Tadeusz Iwaniec;Jani Onninen
  • 通讯作者:
    Jani Onninen
Div-curl fields of finite distortion
  • DOI:
    10.1016/s0764-4442(98)80160-2
  • 发表时间:
    1998-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Tadeusz Iwaniec;Carlo Sbordone
  • 通讯作者:
    Carlo Sbordone
Dynamics of Quasiconformal Fields
On Minimisers of $$L^p$$ -mean Distortion

Tadeusz Iwaniec的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tadeusz Iwaniec', 18)}}的其他基金

Variational approach to Geometric Function Theorem, Nonlinear PDEs and Hyperelasticy
几何函数定理、非线性偏微分方程和超弹性的变分法
  • 批准号:
    1802107
  • 财政年份:
    2018
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Continuing Grant
Conference: Harmonic Analysis, Complex Analysis, Spectral Theory and All That
会议:调和分析、复分析、谱理论等等
  • 批准号:
    1600705
  • 财政年份:
    2016
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Standard Grant
Sobolev Mappings and Energy-Integrals in Mathematical Models of Nonlinear Elasticity
非线性弹性数学模型中的索博列夫映射和能量积分
  • 批准号:
    1301558
  • 财政年份:
    2013
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Continuing Grant
Extremal Problems in Quasiconformal Geometry and Nonlinear PDEs, an Invitation to n- Harmonic Hyperelasticity
拟共形几何和非线性偏微分方程中的极值问题,n 调和超弹性的邀请
  • 批准号:
    0800416
  • 财政年份:
    2008
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Continuing Grant
Geometric Analysis of Deformations of Finite Distortiion via Nonlinear PDEs and Null Lagrangians
通过非线性偏微分方程和零拉格朗日量对有限畸变变形进行几何分析
  • 批准号:
    0301582
  • 财政年份:
    2003
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Continuing Grant
Foundation of the Geometric Function Theory in R^n: The Governing differential Forms, Variational Integrals and Nonlinear Elasticity
R^n 中的几何函数理论基础:控制微分形式、变分积分和非线性弹性
  • 批准号:
    0070807
  • 财政年份:
    2000
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Continuing Grant
Quasiconformal Mappings, Harmonic Analysis and Nonlinear Elasticity from the Prospective of PDEs
偏微分方程视角下的拟共形映射、调和分析和非线性弹性
  • 批准号:
    9706611
  • 财政年份:
    1997
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Quasiconformal Analysis and Harmonic Integrals with Applications to Nonlinear Elasticity
数学科学:拟共形分析和调和积分及其在非线性弹性中的应用
  • 批准号:
    9401104
  • 财政年份:
    1994
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Regularity Problems in Nonlinear Potential Theory and Quasiregular Mappings
数学科学:非线性势论和拟正则映射中的正则问题
  • 批准号:
    9208296
  • 财政年份:
    1992
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Regularity Problems for Variational Integrals and Quasiregular Mappings
数学科学:变分积分和拟正则映射的正则问题
  • 批准号:
    9007946
  • 财政年份:
    1990
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了