Forcing Idealized

强迫理想化

基本信息

  • 批准号:
    0801114
  • 负责人:
  • 金额:
    $ 10.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-04-01 至 2013-03-31
  • 项目状态:
    已结题

项目摘要

The PI proposes to further extend his program on the connection between forcing properties of sigma-ideals and their descriptive set theoretic, measure theoretic, Ramsey, Fubini, and dynamical aspects. The program has been successful in the past, and continues to generate questions and results connecting forcing to other parts of mathematics. The current issues include among others rectangular Ramsey problems, in which the homogeneous sets have forms of rectangles with sides positive with respect to a suitable sigma-ideal, characterizations of sigma-ideals given by collections of measures, and canonical Ramsey theorems, in which Borel equivalence relations attain simple prescribed forms on sets positive with respect to a suitable sigma-ideal.Paul Cohen invented forcing as a method for proving that various questions are unsolvable on the basis of the usual axioms for mathematics. Saharon Shelah sharpened this tool with his method of proper forcing. The method depends on complicated combinatorial ad hoc constructions of partial orders. The PI considers partial orders of a special form--those of Borel subsets of the reals positive with respect to a suitable sigma-ideal ordered by inclusion. It turns out that little generality is lost in this way, the decades of previous work on sigma-ideals in other branches of mathematics can be brought to bear on the resulting questions, and the approach is in fact provably optimal in certain important aspects. The project continues this line of work, connecting the powerful method of forcing with such branches of mathematics as measure theory, combinatorics, dynamical systems, and game theory.
PI建议进一步扩展他的计划,研究sigma理想的强迫性质与其描述集论、测度论、Ramsey、Fubini和动力学方面之间的联系。该项目在过去取得了成功,并继续产生将强迫与数学的其他部分联系起来的问题和结果。当前的问题包括矩形Ramsey问题,其中齐次集合具有矩形的形式,其边相对于合适的sigma-理想为正,由测度集合给出的sigma-理想的特征,以及正则Ramsey定理,其中Borel等价关系在相对于合适的sigma-理想为正的集合上获得简单规定形式。保罗·科恩(Paul Cohen)发明了强迫法,作为一种证明各种问题在通常的数学公理基础上无法解决的方法。撒哈伦·希拉用他的方法把这个工具磨得很锋利。该方法依赖于部分阶的复杂组合特设结构。PI考虑一种特殊形式的偏序——实数正的Borel子集的偏序,它们相对于一个合适的由包含排序的理想。事实证明,这样做几乎没有一般性的损失,以前在其他数学分支中对理想西格玛的几十年的研究可以对所产生的问题产生影响,而且这种方法实际上在某些重要方面是可证明的最佳的。该项目延续了这一工作路线,将强大的强迫方法与测量理论、组合学、动力系统和博弈论等数学分支联系起来。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jindrich Zapletal其他文献

Jindrich Zapletal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jindrich Zapletal', 18)}}的其他基金

Conference: Southeastern Logic Symposium
会议:东南逻辑研讨会
  • 批准号:
    2401437
  • 财政年份:
    2024
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Continuing Grant
Choiceless set theory
无选择集合论
  • 批准号:
    2348371
  • 财政年份:
    2024
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Continuing Grant
Southeastern Logic Symposium
东南逻辑研讨会
  • 批准号:
    1945890
  • 财政年份:
    2020
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Continuing Grant
South-Eastern Logic Symposium
东南逻辑研讨会
  • 批准号:
    1362273
  • 财政年份:
    2014
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Continuing Grant
Ideals and Equivalence Relations
理想与等价关系
  • 批准号:
    1161078
  • 财政年份:
    2012
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Standard Grant
SM: Logic Year at the University of Florida
SM:佛罗里达大学逻辑年
  • 批准号:
    0532644
  • 财政年份:
    2005
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Standard Grant
The Southeast Logic Symposium
东南逻辑研讨会
  • 批准号:
    0335481
  • 财政年份:
    2003
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Standard Grant
Cardinal Invariants and Descriptive Set Theory
基数不变量和描述集合论
  • 批准号:
    0300201
  • 财政年份:
    2003
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Standard Grant
Large Cardinals and the Methodology of Mathematics
大基数和数学方法论
  • 批准号:
    0071437
  • 财政年份:
    2000
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Understanding the Links between Tropical Cyclones and Tropical Circulation under Climate Change through Idealized Coupled Climate Modeling
合作研究:通过理想化耦合气候模型了解气候变化下热带气旋与热带环流之间的联系
  • 批准号:
    2327958
  • 财政年份:
    2023
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the Links between Tropical Cyclones and Tropical Circulation under Climate Change through Idealized Coupled Climate Modeling
合作研究:通过理想化耦合气候模型了解气候变化下热带气旋与热带环流之间的联系
  • 批准号:
    2327959
  • 财政年份:
    2023
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Standard Grant
Addressing Problems in Tropical Atmospheric Dynamics Using Idealized Global Climate Models
使用理想化的全球气候模型解决热带大气动力学问题
  • 批准号:
    2246700
  • 财政年份:
    2023
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Combining Self-organized Maps and Idealized Storm-scale Simulations to Investigate the Effect of Future Climate Change on Severe Convective Storms
合作研究:结合自组织地图和理想化风暴规模模拟来研究未来气候变化对强对流风暴的影响
  • 批准号:
    2209052
  • 财政年份:
    2022
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Standard Grant
AGS-PRF: Examining the Response of Tropical Cyclone Precipitation Structure to Climate Change Using Idealized and Realistic Models
AGS-PRF:使用理想化和现实模型检查热带气旋降水结构对气候变化的响应
  • 批准号:
    2204138
  • 财政年份:
    2022
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Fellowship Award
Collaborative Research: Combining Self-organized Maps and Idealized Storm-scale Simulations to Investigate the Effect of Future Climate Change on Severe Convective Storms
合作研究:结合自组织地图和理想化风暴规模模拟来研究未来气候变化对强对流风暴的影响
  • 批准号:
    2209699
  • 财政年份:
    2022
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Standard Grant
Interaction between near-inertial and geostrophic flow in idealized ocean circulation models
理想化海洋环流模型中近惯性流和地转流之间的相互作用
  • 批准号:
    RGPIN-2017-04075
  • 财政年份:
    2021
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Discovery Grants Program - Individual
Thermodynamic Changes in Hurricane Precipitation In Idealized Simulations
理想化模拟中飓风降水的热力学变化
  • 批准号:
    562385-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 10.6万
  • 项目类别:
    University Undergraduate Student Research Awards
Development of Idealized Geometries that Mimic Upper Airway Deposition of Aerosols and Sprays
开发模拟气溶胶和喷雾剂上呼吸道沉积的理想几何形状
  • 批准号:
    RGPIN-2017-04036
  • 财政年份:
    2021
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Discovery Grants Program - Individual
Discovering the Transition Mechanisms in Fundamental Canonical Flows and in Idealized Propulsion Component Systems
发现基本规范流和理想化推进组件系统中的过渡机制
  • 批准号:
    RGPIN-2016-03619
  • 财政年份:
    2021
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了