Multivariable Operator Theory

多变量算子理论

基本信息

  • 批准号:
    0801168
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-06-01 至 2013-05-31
  • 项目状态:
    已结题

项目摘要

AbstractCurtoThe research deals with multivariable operator theory, focusing attention on three areas: (i) algebraic conditions for existence, uniqueness, and localization of the support of representing measures for truncated moment problems (TMP); (ii) multivariable techniques in the detection of subnormality, esp. for Toeplitz operators on the unit circle, including an approach to the Lifting Problem for Commuting Subnormals (LPCS); and (iii) operator theory over Reinhardt domains, with special attention given to the spectral and structural properties of multivariable weighted shifts. Concerning the first area, we plan to extend recent work on flat extensions of positive moment matrices (joint with L. Fialkow and H.M. Möller), which has led to a general framework for the study of TMP. We plan to apply these methods beyond the extremal case, to obtain algebraic and geometric invariants for solubility, to further develop an appropriate analogue of the Riesz-Haviland Theorem, and to investigate the duality between TMP and degree-bounded representations of polynomials nonnegative on a prescribed semialgebraic set. The second area deals with a multivariable approach to LPCS and with subnormality for Toeplitz operators. Building on work of C. Cowen for the case of hyponormal Toeplitz operators, our approach is to first characterize 2-hyponormality, then k-hyponormality, and eventually subnormality. We would also like to develop further the ideas in recent joint work with J. Yoon and S.H. Lee to search for necessary and sufficient conditions for two commuting subnormal operators to admit a joint normal extension, including some useful connections with Agler's abstract model theory. The third area deals with structural and spectral properties of multiplication operators on functional Hilbert spaces over Reinhardt domains. We plan to extend the study of the spectral picture of subnormal multivariable weighted shifts to hyponormal ones, exploiting recent results (joint with J. Yoon) which highlight some of the pathology that arises when a Berger measure is absent, and using the groupoid techniques introduced in joint work with P. Muhly.Hilbert space operators are infinite generalizations of matrices. The infinite generalization of a vector is frequently a function and for this reason Hilbert space operators are frequently modeled as the operator of multiplication on a space of functions. Part of this project involves finding such models for operators or tuples of operators. Once such models are obtained many basic questions about the structure of these operators become more natural. A separate part of the research deals with inverse problems, esp. moment problems, which are related to power moments of mass distributions, and arise naturally in statistics, spectral analysis, geophysics, image recognition, and economics. Our research is aimed at resolving some outstanding problems in multivariable operator theory, while creating recruitment and retention opportunities for women and minorities to pursue careers in mathematics, by engaging their participation in projects related to the interaction of mathematics with other sciences. The results on truncated moment problems have been used by S. McCullough to obtain a structure theorem in Fejér-Riesz factorization theory; by J. Lasserre in the study of semi-algebraic subset of the plane; and by J. Lasserre and M. Laurent to convert polynomial optimization into an instance of semidefinite programming. We anticipate that such connections with areas outside of operator theory will continue to arise. Several open problems in this proposal are written to generate research projects accessible to undergraduate and graduate students, especially those related to cubatures, low-degree moment problems, their connections with algebraic geometry, and multivariable weighted shifts.
本文研究了多变量算子理论,主要集中在三个方面:(I)截断矩问题(TMP)表示测度支集存在、唯一和局部化的代数条件;(Ii)检测次正态分布的多变量技术,特别是。关于单位圆上的Toeplitz算子,包括交换次正规的提升问题(LPCS)的一种方法;和(Iii)Reinhardt域上的算子理论,特别注意多变量加权移位的谱和结构性质。关于第一个领域,我们计划扩展最近关于正矩矩阵的平坦扩张的工作(与L.Fialkow和H.M.Möller联合),这已经导致了TMP研究的一般框架。我们计划将这些方法应用于极端情况之外,以获得关于可解性的代数和几何不变量,进一步发展Riesz-Havand定理的适当类似,并研究TMP与指定半代数集上的非负多项式的有界表示之间的对偶性。第二个领域涉及LPCS的多变量方法和Toeplitz算子的次正规性。基于C.Cowen关于次正规Toeplitz算子的工作,我们的方法是首先刻画2-亚正规,然后刻画k-亚正规,最后刻画次正规。我们还想进一步发展最近与J.Yoon和S.H.Lee共同工作的想法,寻找两个可交换的次正规算子允许联合正规扩张的充要条件,包括与Agler的抽象模型理论的一些有用的联系。第三部分研究了Reinhardt域上泛函Hilbert空间上乘法算子的结构和谱性质。我们计划将次正常多变量加权移位的谱图的研究扩展到次正常多变量加权移位的谱图,利用最近的结果(与J.Yoon联合),这些结果突出了当没有Berger测度时出现的一些病理,并使用在与P.Muhly的联合工作中引入的群胚技术。Hilbert空间算子是矩阵的无限推广。向量的无限推广经常是一个函数,因此,Hilbert空间算子经常被建模为函数空间上的乘法算子。该项目的一部分涉及为操作符或操作符元组寻找这样的模型。一旦获得了这样的模型,关于这些运算符结构的许多基本问题就变得更加自然了。研究的一个单独部分涉及反问题,特别是。矩问题,与质量分布的功率矩有关,在统计学、光谱分析、地球物理学、图像识别和经济学中自然产生。我们的研究旨在解决多变量算子理论中的一些突出问题,同时通过让妇女和少数族裔参与与数学与其他科学相互作用的项目,为妇女和少数民族创造招聘和留住数学职业的机会。S.McCullough在Fejér-Riesz分解理论中得到了一个结构定理,J.Lasserre在研究平面的半代数子集时得到了结构定理,J.Lasserre和M.Laurent将多项式优化问题转化为半定规划的一个实例。我们预计,这种与算子理论以外的领域的联系将继续出现。这项建议中的几个开放问题是为了产生本科生和研究生可以接触到的研究项目,特别是那些与立方体、低阶矩问题、它们与代数几何的联系以及多变量加权移位有关的研究项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raul Curto其他文献

Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: model validation and dynamic behavior.
使用生化系统理论和代谢控制分析对酿酒酵母发酵途径进行比较表征:模型验证和动态行为。
  • DOI:
  • 发表时间:
    1995
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Albert Sorribas;Raul Curto;Marta Cascante
  • 通讯作者:
    Marta Cascante
Advantages and disadvantages of aggregating fluxes into synthetic and degradative fluxes when modelling metabolic pathways.
在模拟代谢途径时将通量聚合为合成通量和降解通量的优点和缺点。
  • DOI:
    10.1046/j.1432-1327.1999.00760.x
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. D. Atauri;Raul Curto;J. Puigjaner;A. Cornish;Marta Cascante
  • 通讯作者:
    Marta Cascante

Raul Curto的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Raul Curto', 18)}}的其他基金

Multivariable Operator Theory
多变量算子理论
  • 批准号:
    2247167
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
International Workshop on Operator Theory and Applications 2020
2020年算子理论与应用国际研讨会
  • 批准号:
    1953940
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Multivariable Operator Theory
多变量算子理论
  • 批准号:
    1302666
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Travel Support for IWOTA 2012
IWOTA 2012 旅行支持
  • 批准号:
    1240475
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Travel Support for IWOTA 2009
IWOTA 2009 旅行支持
  • 批准号:
    0902270
  • 财政年份:
    2009
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Travel Support for IWOTA 2004
IWOTA 2004 旅行支持
  • 批准号:
    0422952
  • 财政年份:
    2004
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Multivariable Operator Theory
多变量算子理论
  • 批准号:
    0400741
  • 财政年份:
    2004
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Multivariable Operator Theory
多变量算子理论
  • 批准号:
    0099357
  • 财政年份:
    2001
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Multivariable Operator Theory
多变量算子理论
  • 批准号:
    9800931
  • 财政年份:
    1998
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Multivariable Operator Theory
数学科学:多变量算子理论
  • 批准号:
    9401455
  • 财政年份:
    1994
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant

相似海外基金

Multivariable Operator Theory
多变量算子理论
  • 批准号:
    2247167
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Conference on Multivariable Operator Theory and Function Spaces in Several Variables
多变量算子理论与多变量函数空间会议
  • 批准号:
    2055013
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Modern Aspects of Multivariable Operator Theory and Matrix Analysis
多变量算子理论和矩阵分析的现代方面
  • 批准号:
    2000037
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Multivariable Operator Theory: The Interplay between Function Theory, Operator Theory and Operator Algebras
多变量算子理论:函数论、算子理论和算子代数之间的相互作用
  • 批准号:
    1900364
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Noncommutative Function Theory and Multivariable Operator Theory
非交换函数论和多变量算子理论
  • 批准号:
    418585-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Noncommutative Function Theory and Multivariable Operator Theory
非交换函数论和多变量算子理论
  • 批准号:
    418585-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Noncommutative Multivariable Operator Theory
非交换多变量算子理论
  • 批准号:
    1500922
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Noncommutative Function Theory and Multivariable Operator Theory
非交换函数论和多变量算子理论
  • 批准号:
    418585-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Noncommutative Function Theory and Multivariable Operator Theory
非交换函数论和多变量算子理论
  • 批准号:
    418585-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Multivariable Operator Theory
多变量算子理论
  • 批准号:
    1302666
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了