Noncommutative Function Theory and Multivariable Operator Theory

非交换函数论和多变量算子理论

基本信息

  • 批准号:
    418585-2012
  • 负责人:
  • 金额:
    $ 1.24万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

The field of operator theory originated with physicists in the early part of the 20th century as a mathematical framework for modeling phenomenon in quantum mechanics, and it has since become a fundamental component of modern theoretical physics. Operator theory has also become an indispensable part of the mathematical landscape, with important connections to other areas in mathematics. It is these connections that have increasingly become the focus of modern operator theory. My research concerns multivariable operator theory, which is the study of more than one operator at a time. To date, most of the research in multivariable operator theory has focused on the theory of families of commuting operators, where there are deep connections to classical areas of mathematics like function theory, commutative algebra and algebraic geometry. However, in recent years, there has been a great deal of interest in developing noncommutative analogues of these classical areas. It is natural to expect that there should be similarly deep connections between these new developments and the theory of noncommuting families of operators. Classical commutative mathematics guides our intuition and motivates our development of noncommutative mathematics. However, the perspective we gain from working in the noncommutative setting also gives us a better understanding of the commutative setting. My proposal concerns this interplay between the commutative and the noncommutative in the area of multivariable operator theory.
算符理论起源于世纪早期的物理学家,作为量子力学中建模现象的数学框架,它已经成为现代理论物理学的基本组成部分。算子理论也成为数学领域不可或缺的一部分,与数学的其他领域有着重要的联系。正是这些联系日益成为现代算子理论的焦点。 我的研究涉及多变量算子理论,即同时研究多个算子。迄今为止,大多数多变量算子理论的研究都集中在交换算子族的理论上,其中与函数论,交换代数和代数几何等经典数学领域有着深刻的联系。然而,近年来,人们对开发这些经典区域的非对易类似物产生了极大的兴趣。人们很自然地期望,在这些新的发展和非对易算子族理论之间也应该有类似的深刻联系。 经典交换数学引导着我们的直觉,激励着我们发展非交换数学。然而,我们从非对易环境中获得的视角也使我们更好地理解了对易环境。我的建议涉及到多变量算子理论领域中交换算子和非交换算子之间的相互作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kennedy, Matthew其他文献

Dynamical effects of calcium-sensitive potassium currents on voltage and calcium alternans
  • DOI:
    10.1113/jp273626
  • 发表时间:
    2017-04-01
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Kennedy, Matthew;Bers, Donald M.;Sato, Daisuke
  • 通讯作者:
    Sato, Daisuke
Dialister pneumosintes and aortic graft infection - a case report.
  • DOI:
    10.1186/s12879-023-08584-3
  • 发表时间:
    2023-09-19
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Patel, Rachel;Chong, Debra S. T.;Guy, Alison J.;Kennedy, Matthew
  • 通讯作者:
    Kennedy, Matthew
Analysis of consumer choice for low-carbon technologies by using neural networks
  • DOI:
    10.1016/j.jclepro.2015.10.035
  • 发表时间:
    2016-01-20
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    Kennedy, Matthew;Van-Nguyen Dinh;Basu, Biswajit
  • 通讯作者:
    Basu, Biswajit
Changes in Epidermal Growth Factor Receptor Gene Copy Number during Oral Carcinogenesis

Kennedy, Matthew的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kennedy, Matthew', 18)}}的其他基金

Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
  • 批准号:
    RGPIN-2018-05191
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
  • 批准号:
    RGPIN-2018-05191
  • 财政年份:
    2021
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
  • 批准号:
    RGPIN-2018-05191
  • 财政年份:
    2020
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
  • 批准号:
    RGPIN-2018-05191
  • 财政年份:
    2019
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Operator algebras associated to groups and noncommutative convexity
与群和非交换凸性相关的算子代数
  • 批准号:
    522716-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Operator algebras associated to groups and noncommutative convexity
与群和非交换凸性相关的算子代数
  • 批准号:
    522716-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
  • 批准号:
    RGPIN-2018-05191
  • 财政年份:
    2018
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Noncommutative Function Theory and Multivariable Operator Theory
非交换函数论和多变量算子理论
  • 批准号:
    418585-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Noncommutative Function Theory and Multivariable Operator Theory
非交换函数论和多变量算子理论
  • 批准号:
    418585-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Noncommutative Function Theory and Multivariable Operator Theory
非交换函数论和多变量算子理论
  • 批准号:
    418585-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

原生动物四膜虫生殖小核(germline nucleus)体功能(somatic function)的分子基础研究
  • 批准号:
    31872221
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Model theory of operators and noncommutative function theory
算子模型论和非交换函数论
  • 批准号:
    23KJ1070
  • 财政年份:
    2023
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Free Analysis: Exploring the Interactions between Operator Theory and Noncommutative Function Theory
自由分析:探索算子理论与非交换函数论之间的相互作用
  • 批准号:
    2154494
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Standard Grant
Noncommutative Function Theory and Multivariable Operator Theory
非交换函数论和多变量算子理论
  • 批准号:
    418585-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Noncommutative Function Theory and Multivariable Operator Theory
非交换函数论和多变量算子理论
  • 批准号:
    418585-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Noncommutative Function Theory and Multivariable Operator Theory
非交换函数论和多变量算子理论
  • 批准号:
    418585-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Noncommutative Function Theory and Multivariable Operator Theory
非交换函数论和多变量算子理论
  • 批准号:
    418585-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Noncommutative Function Theory and Multivariable Operator Theory
非交换函数论和多变量算子理论
  • 批准号:
    418585-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Noncommutative function theory in operator algebras and operator spaces
算子代数和算子空间中的非交换函数论
  • 批准号:
    1201506
  • 财政年份:
    2012
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Standard Grant
Methods of Hankel and Toeplitz Operators in Noncommutative Function Theory
非交换函数论中Hankel和Toeplitz算子的方法
  • 批准号:
    0196347
  • 财政年份:
    2001
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Standard Grant
Methods of Hankel and Toeplitz Operators in Noncommutative Function Theory
非交换函数论中Hankel和Toeplitz算子的方法
  • 批准号:
    9970561
  • 财政年份:
    1999
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了