Minimal Model Program in Birational Geometry
双有理几何最小模型程序
基本信息
- 批准号:0801258
- 负责人:
- 金额:$ 24.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator proposes to continue the study of the classification of Projective Varieties in Birational Geometry. The Minimal Model Program, started by Mori around the 1970's, aims to generalize the classification of projective surfaces to higher dimensional varieties. This Program was successfully carried out in the 1980's for projective three-folds. The principal investigator plans to carry out the Minimal Model Program in higher dimension, aiming to complete the classification of complex projective varieties.Moroever, the principal investigator plans to extend the Minimal Model Program to a broader class of varieties defined in positive characteristic. Although the techniques involved in this program are very different, he expect to obtain results that are as strong as in the classicalMinimal Model Program. Quite apart from its own interest, it is hoped that this study will be very useful in completing the classification of complex projective varieties. Finally, the principal investigator intends to continue his study of the Kahler-Ricci flow on a wide range of projective varieties, by translating Mori's work into an analytic language.Mathematical tools and concepts have been extensively applied in a wide range of sciences such as physics, engineering and economics. In particular, birational geometry has proven to be a very useful tool in theoretical physics, especially in string theory. Cascini's recent work has already inspired several important conferences. In particular, the Mathematical Sciences Research Institute organized a one-week workshop entitled "Hot Topics:Minimal and Canonical Models in Algebraic Geometry" to discuss the aforementioned results obtained by Cascini and his collaborators. At the same time, seminars on the same topics were organized in many departments of Mathematics in this country.
主要研究者建议继续研究双有理几何中的射影簇的分类。最小模型程序,开始由森在20世纪70年代左右,旨在推广分类的投影曲面,以更高的维品种。该计划在20世纪80年代成功地进行了投影三重。主要研究者计划在更高的维度上进行最小模型程序,旨在完成复杂投射簇的分类。此外,主要研究者计划将最小模型程序扩展到更广泛的正特征定义的簇。虽然这个程序所涉及的技术是非常不同的,他希望获得的结果是强大的,因为在classicalMinimal Model Program。除了本身的兴趣之外,我们希望这项研究对完成复射影簇的分类是非常有用的。最后,主要研究者打算通过将Mori的工作转化为分析语言,继续研究Kahler-Ricci流的各种投影变体。数学工具和概念已广泛应用于物理学、工程学和经济学等广泛的科学领域。特别是,双有理几何已被证明是理论物理中非常有用的工具,特别是在弦理论中。卡西尼最近的工作已经启发了几个重要的会议。特别是,数学科学研究所组织了一个为期一周的讲习班,题为“热门话题:最小和典型的模型在代数几何”讨论上述成果所取得的卡西尼和他的合作者。与此同时,在这个国家的许多数学系举办了关于同一主题的研讨会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Morrison其他文献
ICUs and the Electronic Health Record : Friends or Foes ?
ICU 和电子健康记录:是友还是敌?
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Said Abusalem;S. Rickert;M. Burke;David Morrison;T. Crawford;M. Logsdon;Brittney Brown - 通讯作者:
Brittney Brown
055: Second surgery for infantile esotropia
- DOI:
10.1016/j.jaapos.2008.12.026 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Matthew Emanuel;David Morrison;Sean Donahue - 通讯作者:
Sean Donahue
Refractive growth of the crystalline lens
- DOI:
10.1016/j.jaapos.2021.08.087 - 发表时间:
2021-08-01 - 期刊:
- 影响因子:
- 作者:
Scott R. Lambert;Thaddeus McClatchey;Stacey Kruger;Lorri Wilson;David Morrison - 通讯作者:
David Morrison
The IOL didn't last: indications and tips for IOL removal, repositioning, and exchange
- DOI:
10.1016/j.jaapos.2018.07.330 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:
- 作者:
Erick D. Bothun;David Morrison;Faruk Orge;David A. Plager;M. Edward Wilson - 通讯作者:
M. Edward Wilson
Thermophysics of the planet Mercury
- DOI:
10.1007/bf00241524 - 发表时间:
1970-10-01 - 期刊:
- 影响因子:7.400
- 作者:
David Morrison - 通讯作者:
David Morrison
David Morrison的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Morrison', 18)}}的其他基金
Supersymmetric Field Theories from F-Theory
F 理论中的超对称场论
- 批准号:
1620842 - 财政年份:2016
- 资助金额:
$ 24.61万 - 项目类别:
Continuing Grant
Elliptic Fibrations and Applications to Particle Physics
椭圆纤维振动及其在粒子物理学中的应用
- 批准号:
1007414 - 财政年份:2010
- 资助金额:
$ 24.61万 - 项目类别:
Standard Grant
D-Brane Physics and Calabi-Yau Geometry
D-膜物理和 Calabi-Yau 几何
- 批准号:
0301476 - 财政年份:2003
- 资助金额:
$ 24.61万 - 项目类别:
Continuing Grant
Focused Research Group: Calabi-Yau Manifolds and their Applications
重点研究小组:Calabi-Yau 流形及其应用
- 批准号:
0074072 - 财政年份:2000
- 资助金额:
$ 24.61万 - 项目类别:
Standard Grant
Duke University Program for Vertically Integrated, Interdisciplinary Reseasrch
杜克大学垂直整合、跨学科研究项目
- 批准号:
9983320 - 财政年份:2000
- 资助金额:
$ 24.61万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric Conformal Field Theories, Mirror Symmetry, and Algebraic Geometry
数学科学:几何共形场论、镜像对称和代数几何
- 批准号:
9401447 - 财政年份:1994
- 资助金额:
$ 24.61万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Three Dimensional Algebraic Geometry
数学科学:三维代数几何专题
- 批准号:
9103827 - 财政年份:1991
- 资助金额:
$ 24.61万 - 项目类别:
Standard Grant
相似国自然基金
基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
- 批准号:81503449
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于非齐性 Makov model 建立病证结合的绝经后骨质疏松症早期风险评估模型
- 批准号:30873339
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
The Minimal Model Program in Positive and Mixed Characteristics
正特征和混合特征的最小模型程序
- 批准号:
2306854 - 财政年份:2022
- 资助金额:
$ 24.61万 - 项目类别:
Standard Grant
The Minimal Model Program in Positive and Mixed Characteristics
正特征和混合特征的最小模型程序
- 批准号:
2101897 - 财政年份:2021
- 资助金额:
$ 24.61万 - 项目类别:
Standard Grant
K-stability and minimal model program
K 稳定性和最小模型程序
- 批准号:
18K13388 - 财政年份:2018
- 资助金额:
$ 24.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Minimal model program in positive characteristic
积极特征的最小模型程序
- 批准号:
18K13386 - 财政年份:2018
- 资助金额:
$ 24.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Homological Minimal Model Program
同调最小模型程序
- 批准号:
EP/K021400/2 - 财政年份:2016
- 资助金额:
$ 24.61万 - 项目类别:
Fellowship
Minimal model program and singularity theory
最小模型程序和奇点理论
- 批准号:
16H06710 - 财政年份:2016
- 资助金额:
$ 24.61万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Singularities in the minimal model program
最小模型程序中的奇点
- 批准号:
16K05099 - 财政年份:2016
- 资助金额:
$ 24.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On families of algebraic varieties admitting unipotent group actions from the viewpoint of Minimal Model Program
从最小模型程序的角度论承认单能群作用的代数簇族
- 批准号:
15K04805 - 财政年份:2015
- 资助金额:
$ 24.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Homological Minimal Model Program
同调最小模型程序
- 批准号:
EP/K021400/1 - 财政年份:2013
- 资助金额:
$ 24.61万 - 项目类别:
Fellowship
Boundedness problems on the minimal model program and singularities
最小模型程序和奇点的有界问题
- 批准号:
24684003 - 财政年份:2012
- 资助金额:
$ 24.61万 - 项目类别:
Grant-in-Aid for Young Scientists (A)