Foundations of F-Theory

F 理论基础

基本信息

  • 批准号:
    1307513
  • 负责人:
  • 金额:
    $ 35.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-10-01 至 2017-09-30
  • 项目状态:
    已结题

项目摘要

String theory provides consistent high-energy extrapolations of theoretical models of particle physics, as well as naturally unifying those models with gravity, and provides tools of mathematical physics with a number of applications in theoretical physics. One promising type of string theory model known as F-theory has seen a resurgence of interest in recent years which points out the need for some basic foundational studies. These studies involve a sophisticated branch of mathematics, algebraic geometry, which provides the background for constructing the physical models. The PI will determine what are the restrictions for gauge groups and matter content for F-theory models, both on Calabi-Yau threefolds and Calabi-Yau fourfolds; whether every elliptically-fibered Calabi-Yau fourfold is birational to an equidimensional family, and if not, what is the physical interpretation of the fibers of large dimension; the structure of the base of an elliptically fibered Calabi-Yau manifold; the F-theory interpretation of Calabi-Yau manifolds which have a genus one fibration that is not elliptic (i.e., there is no section); how the birational geometry of the total space of an elliptically fibered Calabi-Yau fourfold interacts with the choices of flux on that fourfold, and in particular, to what extent F-theory vacua are necessarily lifted by fluxes; the M-theory dual interpretation of the theory of T-branes; can the duality between F-theory and nongeometric heterotic strings be extended; and other topics in Calabi-Yau geometry which may be relevant to F-theory, including further exploration of the recent discovery that the gauged linear sigma models which describe Calabi-Yau manifolds contain via a partition function on S2 a wealth of information about the Calabi-Yau manifold. Broader Impact The project will also have a broader impact through educational activities of the PI, at the undergraduate, graduate and postdoctoral levels, as well as through the PI's ongoing efforts to streamline scientific communication by making as much of it available electronically as possible.
弦理论提供了粒子物理学理论模型的一致高能外推,以及自然地将这些模型与引力统一起来,并提供了数学物理学的工具,在理论物理学中有许多应用。近年来,一种被称为F理论的有前途的弦理论模型重新引起了人们的兴趣,这表明需要进行一些基本的基础研究。这些研究涉及到数学的一个复杂的分支--代数几何,它为构造物理模型提供了背景。PI将确定F理论模型(无论是卡-丘三重模型还是卡-丘四重模型)的规范群和物质含量的限制;每个椭圆纤维卡-丘四重模型是否对于等维族是双有理的,如果不是,什么是大维度纤维的物理解释;椭圆纤维卡-丘流形的基底结构;具有非椭圆亏格的纤维化的Calabi-Yau流形的F-理论解释(即,没有章节);椭圆纤维卡-丘四重体的全空间的双有理几何如何与四重体上通量的选择相互作用,特别是,通量在多大程度上必然提升F-理论真空; T-膜理论的M-理论对偶解释; F-理论和非几何杂化弦之间的对偶性是否可以扩展;以及其他可能与F理论相关的卡-丘几何主题,包括进一步探索最近发现的描述卡-丘流形的规范线性sigma模型通过S2上的配分函数包含关于卡-丘流形的丰富信息。该项目还将通过PI在本科生、研究生和博士后层面的教育活动以及PI通过尽可能多地以电子方式提供科学交流来简化科学交流的持续努力产生更广泛的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Morrison其他文献

ICUs and the Electronic Health Record : Friends or Foes ?
ICU 和电子健康记录:是友还是敌?
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Said Abusalem;S. Rickert;M. Burke;David Morrison;T. Crawford;M. Logsdon;Brittney Brown
  • 通讯作者:
    Brittney Brown
055: Second surgery for infantile esotropia
  • DOI:
    10.1016/j.jaapos.2008.12.026
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Matthew Emanuel;David Morrison;Sean Donahue
  • 通讯作者:
    Sean Donahue
Refractive growth of the crystalline lens
  • DOI:
    10.1016/j.jaapos.2021.08.087
  • 发表时间:
    2021-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Scott R. Lambert;Thaddeus McClatchey;Stacey Kruger;Lorri Wilson;David Morrison
  • 通讯作者:
    David Morrison
The IOL didn't last: indications and tips for IOL removal, repositioning, and exchange
  • DOI:
    10.1016/j.jaapos.2018.07.330
  • 发表时间:
    2018-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Erick D. Bothun;David Morrison;Faruk Orge;David A. Plager;M. Edward Wilson
  • 通讯作者:
    M. Edward Wilson
Thermophysics of the planet Mercury
  • DOI:
    10.1007/bf00241524
  • 发表时间:
    1970-10-01
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    David Morrison
  • 通讯作者:
    David Morrison

David Morrison的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Morrison', 18)}}的其他基金

F-Theory and its Applications
F理论及其应用
  • 批准号:
    2014226
  • 财政年份:
    2020
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Standard Grant
Supersymmetric Field Theories from F-Theory
F 理论中的超对称场论
  • 批准号:
    1620842
  • 财政年份:
    2016
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Continuing Grant
Elliptic Fibrations and Applications to Particle Physics
椭圆纤维振动及其在粒子物理学中的应用
  • 批准号:
    1007414
  • 财政年份:
    2010
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Standard Grant
Minimal Model Program in Birational Geometry
双有理几何最小模型程序
  • 批准号:
    0801258
  • 财政年份:
    2008
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Continuing Grant
D-Brane Physics and Calabi-Yau Geometry
D-膜物理和 Calabi-Yau 几何
  • 批准号:
    0301476
  • 财政年份:
    2003
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Continuing Grant
Focused Research Group: Calabi-Yau Manifolds and their Applications
重点研究小组:Calabi-Yau 流形及其应用
  • 批准号:
    0074072
  • 财政年份:
    2000
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Standard Grant
Duke University Program for Vertically Integrated, Interdisciplinary Reseasrch
杜克大学垂直整合、跨学科研究项目
  • 批准号:
    9983320
  • 财政年份:
    2000
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Continuing Grant
Laser Materials Processing
激光材料加工
  • 批准号:
    9551328
  • 财政年份:
    1995
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometric Conformal Field Theories, Mirror Symmetry, and Algebraic Geometry
数学科学:几何共形场论、镜像对称和代数几何
  • 批准号:
    9401447
  • 财政年份:
    1994
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Topics in Three Dimensional Algebraic Geometry
数学科学:三维代数几何专题
  • 批准号:
    9103827
  • 财政年份:
    1991
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
  • 批准号:
    2403813
  • 财政年份:
    2024
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Standard Grant
New Developments in the Philosophical Foundations of Computability Theory
可计算性理论哲学基础的新进展
  • 批准号:
    22KF0258
  • 财政年份:
    2023
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Re-examination and Reconstruction of the Linguistic Foundations of Legal Theory
法律理论语言基础的重新审视与重构
  • 批准号:
    23K01054
  • 财政年份:
    2023
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Foundations for Yang-Mills Theory, Randomly Growing Surfaces, and Related Systems
杨米尔斯理论、随机生长曲面和相关系统的数学基础
  • 批准号:
    2153654
  • 财政年份:
    2022
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Standard Grant
Foundations of Quantum Theory
量子理论基础
  • 批准号:
    2742633
  • 财政年份:
    2022
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Studentship
CAREER: The Foundations of Ellipsoid Synthesis Theory
职业:椭球综合理论的基础
  • 批准号:
    2144732
  • 财政年份:
    2022
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: Foundations of Deep Learning: Theory, Robustness, and the Brain​
协作研究:深度学习的基础:理论、稳健性和大脑 —
  • 批准号:
    2134040
  • 财政年份:
    2021
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Foundations of Deep Learning: Theory, Robustness, and the Brain​
协作研究:深度学习的基础:理论、稳健性和大脑 —
  • 批准号:
    2134105
  • 财政年份:
    2021
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Foundations of Deep Learning: Theory, Robustness, and the Brain​
协作研究:深度学习的基础:理论、稳健性和大脑 —
  • 批准号:
    2134108
  • 财政年份:
    2021
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Standard Grant
Foundations of the Finite Model Theory of Concatenation
级联有限模型理论的基础
  • 批准号:
    EP/T033762/1
  • 财政年份:
    2021
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了