Elliptic Fibrations and Applications to Particle Physics
椭圆纤维振动及其在粒子物理学中的应用
基本信息
- 批准号:1007414
- 负责人:
- 金额:$ 14.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-1007414Principal Investigator: David R. MorrisonString theory provides consistent high-energy extrapolations of theoretical models of particle physics, as well as naturally unifying those models with gravity. One promising type of string theory model for particle physics known as "F-theory" has seen a resurgence of interest in the past two years. The research funded by this grant will investigate the mathematical underpinnings of F-theory models (which are known as "elliptic fibrations" in the mathematical world), with the goal of answering some key mathematical questions which will clarify the physical properties of the models. The goals are the determination of the extent to which the F-theory constructions can be studied locally; determining how the mathematical structure of the local Picard group allows the hypercharge gauge symmetry in the physical theory to survive to low energy; and studying various specific aspects of elliptic fibrations (codimension three phenomena, canonical bundle formulae) which may affect how numerous the F-theory models are.Particle physicists have employed a wide variety of sophisticated mathematical tools to help explain the behavior and structure of our world at a subatomic level. In preparation for the data which will soon be available from the Large Hadron Collider at the European Organization for Nuclear Research (CERN), theoretical particle physicists have been refining their predictions; in some cases, these refinements can only be made if the mathematical tools themselves are improved. The research funded by this grant aims to improve one of the important mathematical tools currently being used, a tool known as ``elliptic fibrations'' which comes from the geometric study of solutions of polynomial equations, a part of the mathematical field of algebraic geometry. Recent uses of this tool by theoretical particle physicists have focussed attention on some areas where it needs improvement in order to be able to make the necessarily calculations for particle physics; this research will make those improvements.
摘要奖:DMS-1007414主要研究者:大卫R.莫里森弦理论为粒子物理学的理论模型提供了一致的高能外推,并自然地将这些模型与引力统一起来。在过去的两年里,一种被称为“F理论”的粒子物理学弦理论模型重新引起了人们的兴趣。 这项研究将调查F理论模型(在数学界被称为“椭圆纤维化”)的数学基础,目的是回答一些关键的数学问题,这些问题将澄清模型的物理特性。 目标是确定F理论结构可以局部研究的程度;确定局部Picard群的数学结构如何允许物理理论中的超荷规范对称性在低能量下生存;研究椭圆纤维化的各个方面(余维三现象,规范束公式),这可能会影响多少F-粒子物理学家已经使用了各种各样复杂的数学工具来帮助解释我们世界在亚原子水平上的行为和结构。 为了准备即将从欧洲核子研究组织(CERN)的大型强子对撞机获得的数据,理论粒子物理学家一直在改进他们的预测;在某些情况下,这些改进只能在数学工具本身得到改进的情况下进行。 这项研究的目的是改进目前正在使用的一种重要的数学工具,这种工具被称为“椭圆纤维”,它来自多项式方程解的几何研究,是代数几何数学领域的一部分。 理论粒子物理学家最近使用这个工具,把注意力集中在一些需要改进的领域,以便能够为粒子物理学进行必要的计算;这项研究将使这些改进。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Morrison其他文献
ICUs and the Electronic Health Record : Friends or Foes ?
ICU 和电子健康记录:是友还是敌?
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Said Abusalem;S. Rickert;M. Burke;David Morrison;T. Crawford;M. Logsdon;Brittney Brown - 通讯作者:
Brittney Brown
055: Second surgery for infantile esotropia
- DOI:
10.1016/j.jaapos.2008.12.026 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Matthew Emanuel;David Morrison;Sean Donahue - 通讯作者:
Sean Donahue
Refractive growth of the crystalline lens
- DOI:
10.1016/j.jaapos.2021.08.087 - 发表时间:
2021-08-01 - 期刊:
- 影响因子:
- 作者:
Scott R. Lambert;Thaddeus McClatchey;Stacey Kruger;Lorri Wilson;David Morrison - 通讯作者:
David Morrison
The IOL didn't last: indications and tips for IOL removal, repositioning, and exchange
- DOI:
10.1016/j.jaapos.2018.07.330 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:
- 作者:
Erick D. Bothun;David Morrison;Faruk Orge;David A. Plager;M. Edward Wilson - 通讯作者:
M. Edward Wilson
Thermophysics of the planet Mercury
- DOI:
10.1007/bf00241524 - 发表时间:
1970-10-01 - 期刊:
- 影响因子:7.400
- 作者:
David Morrison - 通讯作者:
David Morrison
David Morrison的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Morrison', 18)}}的其他基金
Supersymmetric Field Theories from F-Theory
F 理论中的超对称场论
- 批准号:
1620842 - 财政年份:2016
- 资助金额:
$ 14.8万 - 项目类别:
Continuing Grant
Minimal Model Program in Birational Geometry
双有理几何最小模型程序
- 批准号:
0801258 - 财政年份:2008
- 资助金额:
$ 14.8万 - 项目类别:
Continuing Grant
D-Brane Physics and Calabi-Yau Geometry
D-膜物理和 Calabi-Yau 几何
- 批准号:
0301476 - 财政年份:2003
- 资助金额:
$ 14.8万 - 项目类别:
Continuing Grant
Focused Research Group: Calabi-Yau Manifolds and their Applications
重点研究小组:Calabi-Yau 流形及其应用
- 批准号:
0074072 - 财政年份:2000
- 资助金额:
$ 14.8万 - 项目类别:
Standard Grant
Duke University Program for Vertically Integrated, Interdisciplinary Reseasrch
杜克大学垂直整合、跨学科研究项目
- 批准号:
9983320 - 财政年份:2000
- 资助金额:
$ 14.8万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric Conformal Field Theories, Mirror Symmetry, and Algebraic Geometry
数学科学:几何共形场论、镜像对称和代数几何
- 批准号:
9401447 - 财政年份:1994
- 资助金额:
$ 14.8万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Three Dimensional Algebraic Geometry
数学科学:三维代数几何专题
- 批准号:
9103827 - 财政年份:1991
- 资助金额:
$ 14.8万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Compact Hyper-Kahler manifolds and Lagrangian fibrations
职业:紧凑超卡勒流形和拉格朗日纤维
- 批准号:
2144483 - 财政年份:2022
- 资助金额:
$ 14.8万 - 项目类别:
Continuing Grant
Structure theorem for varieties of special type focusing on rational connected fibrations and its application to classification theory
关注有理连接纤维的特殊类型品种结构定理及其在分类理论中的应用
- 批准号:
21H00976 - 财政年份:2021
- 资助金额:
$ 14.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mirror Symmetry for Fibrations and Degenerations
纤维化和退化的镜像对称
- 批准号:
EP/V005545/1 - 财政年份:2021
- 资助金额:
$ 14.8万 - 项目类别:
Research Grant
A study for some rational homotopical conditions on the classification spaces of fibrations
纤维分类空间的一些有理同伦条件的研究
- 批准号:
20K03591 - 财政年份:2020
- 资助金额:
$ 14.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affine space fibrations on affine algebraic varieties and unipotent group actions
仿射代数簇上的仿射空间纤维振动和单能群作用
- 批准号:
20K03570 - 财政年份:2020
- 资助金额:
$ 14.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symplectic Surfaces, Lefschetz Fibrations, and Arboreal Skeleta
辛曲面、莱夫谢茨纤维和树栖骨骼
- 批准号:
1904074 - 财政年份:2019
- 资助金额:
$ 14.8万 - 项目类别:
Continuing Grant
Lefschetz Fibrations, Their Noncommutative Counterparts, and Formal Groups
Lefschetz 纤维、它们的非交换对应物以及形式群
- 批准号:
1904997 - 财政年份:2019
- 资助金额:
$ 14.8万 - 项目类别:
Continuing Grant
Calabi-Yau Manifolds: Families, Fibrations, and Degenerations
卡拉比-丘流形:族、纤维化和退化
- 批准号:
2299824 - 财政年份:2019
- 资助金额:
$ 14.8万 - 项目类别:
Studentship
Springer Theory for Symmetric Spaces, Real Groups, Hitchin Fibrations, and Geometric Langlands
对称空间、实群、希钦纤维和几何朗兰兹的施普林格理论
- 批准号:
2022303 - 财政年份:2019
- 资助金额:
$ 14.8万 - 项目类别:
Standard Grant
Hyper-Kahler Geometry via Lagrangian Fibrations and Symplectic Resolutions
通过拉格朗日纤维和辛分辨率的超卡勒几何
- 批准号:
1949812 - 财政年份:2019
- 资助金额:
$ 14.8万 - 项目类别:
Standard Grant














{{item.name}}会员




