Realization Theory and Functional Model Reduction in Biochemical Networks

生化网络的实现理论与功能模型还原

基本信息

  • 批准号:
    0802008
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-05-01 至 2012-04-30
  • 项目状态:
    已结题

项目摘要

Eccs-0802008BamiehObjectiveOne of the central problems in the emerging field of Systems Biology is the analysis and functional classification of large complex biochemical reaction networks. Such networks are increasingly being scrutinized and their individual components painstakingly investigated in detail. However, a general methodology for inferring dynamical and functional behavior from the detailed network description is still sorely lacking. We propose methodologies by which large components of such networks can be replaced by components of much smaller state dimension that have similar functionality. We term this problem Functional Model Reduction to emphasize distinctions with traditional model reduction techniques. The enabling ideas behind this methodology consist of understanding how dynamical systems that are designed for prescribed functions (such as logical or hybrid operations) can be implemented with dynamical networks constrained to have specific types of building blocks. We investigate it in the specific context of building blocks that are available from basic biochemical kinetics. Enabled with this analysis, we pose the problem of carrying out this analysis in reverse, that is, given networks with specific types of building blocks, we ask what type of functional behavior they represent, and whether it is possible to mirror that behavior with dynamical system of much lower dimension. Our goal is not to develop a general nonlinear model reduction technique, but rather one that is particularly tailored to the differential equations that result from biochemical kinetics. Some novel aspects of systems theory will need to be developed such as realizations with prespecified network components as well as functional objectives for model reduction.Intellectual MeritUncovering and classification of function from the detailed description of biochemical reaction networks is a central problem in systems biology and dynamical systems theory. The proposed work will contribute techniques that are particularly tailored to the dynamical network that arise from biochemical kinetics. A new paradigm for model reduction based on network function will be developed.Broader ImpactThe broader impacts of this work include the application of the model reduction techniques developed in this project to a high order complex model of ischemic stroke that is being developed, which will make possible new understanding of this disease and new treatments for it. The multi-disciplinary nature of this work will ensure that graduate students from dynamical systems and control and those from the life sciences will develop new skill sets from the other disciplines and will help create graduates who are comfortable working at the boundary of their disciplines.
系统生物学新兴领域的核心问题之一是大型复杂生化反应网络的分析和功能分类。这些网络正受到越来越多的审查,其各个组成部分也受到细致的调查。然而,从详细的网络描述中推断动力学和功能行为的一般方法仍然非常缺乏。我们提出的方法,这种网络的大组件可以被替换为具有类似功能的小得多的状态维度的组件。我们把这个问题的功能模型约简强调与传统的模型约简技术的区别。这种方法背后的使能思想包括理解为指定功能(如逻辑或混合操作)设计的动态系统如何可以用受限于特定类型构建块的动态网络来实现。我们调查它的特定背景下,可从基本的生化动力学的积木。有了这个分析,我们提出了反向执行这个分析的问题,也就是说,给定具有特定类型构建块的网络,我们问它们代表什么类型的功能行为,以及是否有可能用低得多的维度的动力系统来反映这种行为。我们的目标是不开发一个通用的非线性模型简化技术,而是一个特别适合的微分方程,结果从生化动力学。一些新的方面的系统理论将需要开发,如实现与预先指定的网络组件以及功能的modelreduction.Intellectual MeritUncovering和分类的功能从详细描述的生化反应网络是一个中心问题,在系统生物学和动力系统理论。拟议的工作将有助于技术,特别是针对动态网络,从生化动力学。将开发基于网络功能的模型简化的新范例。更广泛的影响这项工作的更广泛的影响包括将本项目中开发的模型简化技术应用于正在开发的缺血性中风的高阶复杂模型,这将使人们有可能对这种疾病有新的认识和新的治疗方法。这项工作的学科性质将确保来自动力系统和控制的研究生以及来自生命科学的研究生将从其他学科发展新的技能,并将有助于培养在其学科边界工作的毕业生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bassam Bamieh其他文献

Robust burn control of a fusion reactor by modulation of the refueling rate
通过调节加料速率对聚变反应堆进行鲁棒燃烧控制
  • DOI:
    10.13182/fst94-a30287
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Hui;Bassam Bamieh;G. Miley
  • 通讯作者:
    G. Miley
Optimal decentralized controllers for spatially invariant systems
空间不变系统的最优分散控制器
Stochastic Models for Cochlear Instabilities.
耳蜗不稳定性的随机模型。
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Filo;Bassam Bamieh
  • 通讯作者:
    Bassam Bamieh
Unstable modes versus non-normal modes in supercritical channel flows
超临界通道流中的不稳定模式与非正常模式
Parametric Resonance in Networked Oscillators
网络振荡器中的参数共振
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karthik Chikmagalur;Bassam Bamieh
  • 通讯作者:
    Bassam Bamieh

Bassam Bamieh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bassam Bamieh', 18)}}的其他基金

Collaborative Research: Robust-by-Design Networked Dynamical Systems: Bridging the Logic/Analog Divide
协作研究:设计稳健的网络动力系统:弥合逻辑/模拟鸿沟
  • 批准号:
    1932777
  • 财政年份:
    2019
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Optimal Field Sensing Strategies for Time-Critical Estimation and Prediction of Dynamic Environments
用于动态环境的时间关键估计和预测的最佳场传感策略
  • 批准号:
    1763064
  • 财政年份:
    2018
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Control of ThermoAcoustic Phenomena with Applications to Novel Energy Conversion Devices
热声现象的控制及其在新型能量转换装置中的应用
  • 批准号:
    1363386
  • 财政年份:
    2014
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Quantifying Complex Behavior in Large-Scale Systems through Structured Uncertainty Analysis
通过结构化不确定性分析量化大型系统中的复杂行为
  • 批准号:
    1408442
  • 财政年份:
    2014
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
EAGER: Thermoacoustics: Active Feedback Control Enabling a New Generation of Energy Conversion Devices
EAGER:热声学:主动反馈控制实现新一代能量转换设备
  • 批准号:
    0937539
  • 财政年份:
    2009
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Cardiovascular Flow Synthesis - A Hybrid Systems Approach
心血管血流合成 - 混合系统方法
  • 批准号:
    0626170
  • 财政年份:
    2006
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Control and estimation in distributed actuator/sensor arrays with application to micro-systems
分布式执行器/传感器阵列的控制和估计及其在微系统中的应用
  • 批准号:
    0323814
  • 财政年份:
    2003
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
SGER: Dynamics, Identification and Control of an Optical Tweezer System
SGER:光镊系统的动力学、识别和控制
  • 批准号:
    0341029
  • 财政年份:
    2003
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
SGER: Distributed Control of Capacitive Micro-Cantilever Arrays
SGER:电容微悬臂梁阵列的分布式控制
  • 批准号:
    0226799
  • 财政年份:
    2002
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
The Mohammed Dahleh Symposium
穆罕默德·达勒研讨会
  • 批准号:
    0220250
  • 财政年份:
    2002
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Non-Born-Oppenheimer Effects in the Framework of Multicomponent Time-Dependent Density Functional Theory
多分量时变密度泛函理论框架中的非玻恩奥本海默效应
  • 批准号:
    2415034
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Goldilocks convergence tools and best practices for numerical approximations in Density Functional Theory calculations
密度泛函理论计算中数值近似的金发姑娘收敛工具和最佳实践
  • 批准号:
    EP/Z530657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Research Grant
Density Functional Theory of Electronic Structure
电子结构密度泛函理论
  • 批准号:
    2344734
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Emergence of theory of mind in young children, explored with functional MRI and Virtual Reality (VR)
通过功能性 MRI 和虚拟现实 (VR) 探索幼儿心智理论的出现
  • 批准号:
    2886793
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Studentship
Development of the pair-density functional theory for superconductors
超导体对密度泛函理论的发展
  • 批准号:
    23K03250
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of a Novel Functional Mechanism of Intravenous Anesthetics Based on the Membrane Lipid Theory and Its Application to Clinical Practice
基于膜脂理论的静脉麻醉药新作用机制的阐明及其在临床实践中的应用
  • 批准号:
    23K06361
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Enabling the Accurate Simulation of Multi-Dimensional Core-Level Spectroscopies in Molecular Complexes using Time-Dependent Density Functional Theory
职业:使用瞬态密度泛函理论实现分子复合物中多维核心级光谱的精确模拟
  • 批准号:
    2337902
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Exploring Properties of the Inner Crust of Neutron Stars Through Band Theory Calculations Based on Superfluid Density Functional Theory
基于超流体密度泛函理论的能带理论计算探索中子星内壳的性质
  • 批准号:
    23K03410
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Density Functional Theory of Molecular Fragments: Strong Electron Correlation Beyond Density Functional Approximations
分子片段的密度泛函理论:超越密度泛函近似的强电子相关性
  • 批准号:
    2306011
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Machine-Aided General Framework for Fluctuating Dynamic Density Functional Theory (MAGFFDDFT)
波动动态密度泛函理论的机器辅助通用框架 (MAGFFDDFT)
  • 批准号:
    EP/X038645/1
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了