Quantifying Complex Behavior in Large-Scale Systems through Structured Uncertainty Analysis
通过结构化不确定性分析量化大型系统中的复杂行为
基本信息
- 批准号:1408442
- 负责人:
- 金额:$ 48.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantifying Complex Behavior in Large-Scale Systems through Structured Uncertainty AnalysisLarge-scale systems of interacting dynamical elements are ubiquitous in nature and are increasingly common in engineered systems. Examples of such systems include large networks such as the power grid, vehicular traffic, social networks and many more. Such networks exhibit many complex phenomena arising from dynamic interaction between individual components. Qualitative understanding and quantitative prediction of these phenomena is a major current scientific and engineering challenge. This award supports research to develop quantitative analysis methods based on the techniques of structured stochastic uncertainty. These techniques model large-scale systems operating in uncertain environments, which include external forcing and attacks as well as internal disorder in interaction dynamics. The main observation is that even though individual uncertainty sources may be very small, their aggregate network effect may be large and even catastrophic, leading to loss of network stability or performance. Structured uncertainty analysis aims at quantifying exactly which type of small-scale uncertainty could lead to large-scale network-wide phenomena. Uncertainties in large-scale dynamic systems can occur in system parameters or structure as well as in uncertain forcing and disturbances. The theoretical aims of the research program are twofold. The first is to develop a unified approach to the seemingly distinct problems of large-scale networked systems on the one hand, and systems over continuum space described by partial differential equations on the other. These two sets of problems will both be treated as spatially distributed systems, but with discrete space being described by the network structure in the former, and continuum space in the latter. This theoretical synthesis enables a comparative development of results and methods in both settings in a manner similar to, but significantly richer, than analogies between discrete- and continuous-time systems. The second aim is to develop highly-scalable, simulation-free performance and stability tests for linear systems with both additive and multiplicative noise. Application areas for which specialized techniques will be developed are network/cooperative control where both the network structure and conditions are stochastically varying, and fluid flow with stochastic field coefficients. This methodological synthesis contributes to the foundations of Control Theory in the area of additive and multiplicative noise. It enables the solution of several problems in uncertain systems that are typically investigated through expensive stochastic simulations, and are therefore not scalable to large-scale systems. The ability to address discrete and continuum space in a unified manner will allow for a new synthesis of concepts and results between uncertain networks and systems described by partial differential equations.
通过结构不确定性分析量化大系统的复杂行为由相互作用的动力元素组成的大系统在自然界中普遍存在,并且在工程系统中越来越普遍。此类系统的例子包括电网、车辆交通、社交网络等大型网络。这种网络表现出许多复杂的现象,这些现象是由单个组件之间的动态相互作用引起的。对这些现象的定性理解和定量预测是当前科学和工程的主要挑战。该奖项支持基于结构化随机不确定性技术开发定量分析方法的研究。这些技术模拟在不确定环境中运行的大规模系统,包括外部强迫和攻击以及相互作用动力学中的内部混乱。主要观察结果是,尽管单个不确定性源可能很小,但它们的总体网络效应可能很大,甚至是灾难性的,导致网络稳定性或性能的丧失。结构化不确定性分析的目的是精确量化哪种类型的小规模不确定性可能导致大规模的网络范围现象。大尺度动态系统中的不确定性不仅存在于系统参数或结构中,也存在于不确定的强迫和扰动中。该研究计划的理论目的有两个。首先是开发一种统一的方法来解决一方面是大规模网络系统的看似不同的问题,另一方面是由偏微分方程描述的连续空间上的系统。这两组问题都将被视为空间分布系统,但前者用网络结构描述离散空间,后者用连续空间。这种理论综合使两种情况下的结果和方法的比较发展与离散和连续时间系统之间的类比相似,但要丰富得多。第二个目标是为具有加性和乘性噪声的线性系统开发高度可扩展,无需模拟的性能和稳定性测试。将发展专门技术的应用领域是网络结构和条件都是随机变化的网络/协同控制,以及具有随机场系数的流体流动。这种方法的综合为加性和乘性噪声领域的控制理论奠定了基础。它能够解决不确定系统中的几个问题,这些问题通常通过昂贵的随机模拟来研究,因此不能扩展到大规模系统。以统一的方式处理离散和连续空间的能力将允许在不确定网络和偏微分方程描述的系统之间进行概念和结果的新综合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bassam Bamieh其他文献
Optimal decentralized controllers for spatially invariant systems
空间不变系统的最优分散控制器
- DOI:
10.1109/cdc.2000.912295 - 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
P. Voulgaris;G. Bianchini;Bassam Bamieh - 通讯作者:
Bassam Bamieh
Stochastic Models for Cochlear Instabilities.
耳蜗不稳定性的随机模型。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
M. Filo;Bassam Bamieh - 通讯作者:
Bassam Bamieh
Robust burn control of a fusion reactor by modulation of the refueling rate
通过调节加料速率对聚变反应堆进行鲁棒燃烧控制
- DOI:
10.13182/fst94-a30287 - 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
W. Hui;Bassam Bamieh;G. Miley - 通讯作者:
G. Miley
Unstable modes versus non-normal modes in supercritical channel flows
超临界通道流中的不稳定模式与非正常模式
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
M. Jovanović;Bassam Bamieh - 通讯作者:
Bassam Bamieh
Spatially invariant embeddings of systems with boundaries
有边界系统的空间不变嵌入
- DOI:
10.1109/acc.2016.7526633 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
J. Epperlein;Bassam Bamieh - 通讯作者:
Bassam Bamieh
Bassam Bamieh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bassam Bamieh', 18)}}的其他基金
Collaborative Research: Robust-by-Design Networked Dynamical Systems: Bridging the Logic/Analog Divide
协作研究:设计稳健的网络动力系统:弥合逻辑/模拟鸿沟
- 批准号:
1932777 - 财政年份:2019
- 资助金额:
$ 48.53万 - 项目类别:
Standard Grant
Optimal Field Sensing Strategies for Time-Critical Estimation and Prediction of Dynamic Environments
用于动态环境的时间关键估计和预测的最佳场传感策略
- 批准号:
1763064 - 财政年份:2018
- 资助金额:
$ 48.53万 - 项目类别:
Standard Grant
Control of ThermoAcoustic Phenomena with Applications to Novel Energy Conversion Devices
热声现象的控制及其在新型能量转换装置中的应用
- 批准号:
1363386 - 财政年份:2014
- 资助金额:
$ 48.53万 - 项目类别:
Standard Grant
EAGER: Thermoacoustics: Active Feedback Control Enabling a New Generation of Energy Conversion Devices
EAGER:热声学:主动反馈控制实现新一代能量转换设备
- 批准号:
0937539 - 财政年份:2009
- 资助金额:
$ 48.53万 - 项目类别:
Standard Grant
Realization Theory and Functional Model Reduction in Biochemical Networks
生化网络的实现理论与功能模型还原
- 批准号:
0802008 - 财政年份:2008
- 资助金额:
$ 48.53万 - 项目类别:
Continuing Grant
Cardiovascular Flow Synthesis - A Hybrid Systems Approach
心血管血流合成 - 混合系统方法
- 批准号:
0626170 - 财政年份:2006
- 资助金额:
$ 48.53万 - 项目类别:
Continuing Grant
Control and estimation in distributed actuator/sensor arrays with application to micro-systems
分布式执行器/传感器阵列的控制和估计及其在微系统中的应用
- 批准号:
0323814 - 财政年份:2003
- 资助金额:
$ 48.53万 - 项目类别:
Continuing Grant
SGER: Dynamics, Identification and Control of an Optical Tweezer System
SGER:光镊系统的动力学、识别和控制
- 批准号:
0341029 - 财政年份:2003
- 资助金额:
$ 48.53万 - 项目类别:
Standard Grant
SGER: Distributed Control of Capacitive Micro-Cantilever Arrays
SGER:电容微悬臂梁阵列的分布式控制
- 批准号:
0226799 - 财政年份:2002
- 资助金额:
$ 48.53万 - 项目类别:
Standard Grant
相似国自然基金
TPLATE Complex通过胞吞调控CLV3-CLAVATA多肽信号模块维持干细胞稳态的分子机制研究
- 批准号:32370337
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
二甲双胍对于模型蛋白、γ-secretase、Complex I自由能曲面的影响
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高脂饮食损伤巨噬细胞ndufs4表达激活Complex I/mROS/HIF-1通路参与溃疡性结肠炎研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
线粒体参与呼吸中枢pre-Bötzinger complex呼吸可塑性调控的机制研究
- 批准号:31971055
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
北温带中华蹄盖蕨复合体Athyrium sinense complex的物种分化
- 批准号:31872651
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
边缘鳞盖蕨复合体种 (Microlepia marginata complex) 的网状进化及物种形成研究
- 批准号:31860044
- 批准年份:2018
- 资助金额:37.0 万元
- 项目类别:地区科学基金项目
益气通络颗粒及主要单体通过调节cAMP/PKA/Complex I通路治疗气虚血瘀证脑梗死的机制研究
- 批准号:81703747
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
生物钟转录抑制复合体 Evening Complex 调控茉莉酸诱导叶片衰老的分子机制研究
- 批准号:31670290
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
延伸子复合物(Elongator complex)的翻译调控作用
- 批准号:31360023
- 批准年份:2013
- 资助金额:51.0 万元
- 项目类别:地区科学基金项目
Complex I 基因变异与寿命的关联及其作用机制的研究
- 批准号:81370445
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
Complex approaches to suppressing eye damage in children and creating mechanisms that promote good behavior
抑制儿童眼部损伤并建立促进良好行为的机制的复杂方法
- 批准号:
23K02694 - 财政年份:2023
- 资助金额:
$ 48.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetic interactions among targets of master regulator genes as drivers of complex behavior in Drosophila intestinal stem cells
主调节基因靶标之间的遗传相互作用作为果蝇肠道干细胞复杂行为的驱动因素
- 批准号:
10629992 - 财政年份:2023
- 资助金额:
$ 48.53万 - 项目类别:
EAGER: Biophysical Study of Solution Behavior and Vulnerability of Viruses with Complex N-glycans
EAGER:具有复杂 N-聚糖的病毒的溶液行为和脆弱性的生物物理研究
- 批准号:
2332459 - 财政年份:2023
- 资助金额:
$ 48.53万 - 项目类别:
Standard Grant
Coupled analysis of measurement using 3D CT and numerical simulation for iron ore high temperature complex dynamic behavior
铁矿石高温复杂动态行为3D CT测量与数值模拟耦合分析
- 批准号:
23K17810 - 财政年份:2023
- 资助金额:
$ 48.53万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
ERI: Mechanical Behavior of Dualphase Complex Concentrated Alloys at Elevated Temperatures
ERI:双相复杂浓缩合金在高温下的机械行为
- 批准号:
2138674 - 财政年份:2022
- 资助金额:
$ 48.53万 - 项目类别:
Standard Grant
CAREER: Signal to Noise: How Complex Social Information Regulates Brain Genomics and Behavior
职业:信噪比:复杂的社会信息如何调节大脑基因组和行为
- 批准号:
2045901 - 财政年份:2021
- 资助金额:
$ 48.53万 - 项目类别:
Continuing Grant
Adaptive Behavior Generation for 3D Snake Robots in Complex Environments
复杂环境中 3D 蛇形机器人的自适应行为生成
- 批准号:
20K04380 - 财政年份:2020
- 资助金额:
$ 48.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of three-dimensional LAI fluid flow vortex behavior, elucidation of cleaning efficiency and safety, and development of clinical application techniques in complex root canal systems
三维LAI流体涡流行为的建立,阐明清洁效率和安全性,开发复杂根管系统的临床应用技术
- 批准号:
20K23019 - 财政年份:2020
- 资助金额:
$ 48.53万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Complex and Singular Behavior in Continuum Mechanics Models
连续力学模型中的复杂和奇异行为
- 批准号:
1909103 - 财政年份:2019
- 资助金额:
$ 48.53万 - 项目类别:
Standard Grant