GOALI: Neural Networks and Adaptive Critic Designs For Energy Security and Sustainability
GOALI:用于能源安全和可持续性的神经网络和自适应批评设计
基本信息
- 批准号:0802047
- 负责人:
- 金额:$ 39.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractProposal Number: ECCS-0802047Proposal Title: GOALI: Neural Networks and Adaptive Critic Designs For Energy Security and SustainabilityPI Name: Harley, RonaldPI Institution: GA Tech Research Corporation - GA Institute of TechnologyGOALI: NEURAL NETWORKS AND ADAPTIVE CRITIC DESIGNS FOR ENERGY SECURITY AND SUSTAINABILITYObjectives and ApproachThe objective is to develop an intelligent wide area controller to monitor and coordinate wide areas of a power network that includes a windfarm, solarfarm, pumped storage system and other traditional generators, in order to optimally use all of these resources both during slow changing conditions such as moving cloud cover, and variations in wind speed, as well as during transient disturbances. The approach will use adaptive critic designs to develop an optimal wide area controller, which does not need any mathematical descriptions of the power system. This involves first simulation, then validation on a real time digital simulator and finally, a demonstration on a small scale 2000kW power system in Colorado.Intellectual MeritLearning how well the theory of adaptive critic designs scales up with cellular neural networks and ObjectNets. Optimum utilization of the wind and solar farms, will improve reliability, damping during disturbances in the power network, and assist control room operators. The findings should provide a better understanding of multiple-time base system identifiers and neurocontrollers.Broader ImpactThe outcome of this project will allow solar and wind farms to be recognized and used by engineers in the same way as other more traditional energy sources and to be fully integrated with controls to assist in maintaining grid stability, and energy security and sustainability. Skilled manpower including minorities will be produced to serve as future champions in the quest for generating "clean" energy and reducing CO2 and other greenhouse gases emissions.
摘要提案编号:ECCS-0802047提案标题:GOALI:能源安全和可持续发展的神经网络和自适应批评设计PI名称:Harley,RonaldPI机构:GA Tech Research Corporation - GA理工学院GOALI:能源安全和可持续发展的神经网络和自适应批评设计目标和方法目标是开发一种智能广泛的智能网络区域控制器,用于监视和协调电力网络的广泛区域,包括 风电场、太阳能发电场、抽水蓄能系统和其他传统发电机,以便在云层移动、风速变化等缓慢变化的条件下以及瞬态干扰期间最佳地利用所有这些资源。该方法将使用自适应批评设计来开发最佳广域控制器,该控制器不需要对电力系统进行任何数学描述。这包括首先进行模拟,然后在实时数字模拟器上进行验证,最后在科罗拉多州的小型 2000kW 电力系统上进行演示。智力优点学习自适应批评设计理论如何通过细胞神经网络和 ObjectNet 进行扩展。风力发电场和太阳能发电场的最佳利用将提高可靠性、电网扰动期间的阻尼,并协助控制室操作员。研究结果应该有助于更好地理解多时基系统标识符和神经控制器。 更广泛的影响该项目的成果将使工程师能够像其他更传统的能源一样识别和使用太阳能和风电场,并与控制系统完全集成,以协助维持电网稳定性、能源安全和可持续性。将培养包括少数族裔在内的熟练劳动力,作为未来追求“清洁”能源和减少二氧化碳和其他温室气体排放的冠军。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ronald Harley其他文献
Approximate dynamic programming based supplementary reactive power control for DFIG wind farm to enhance power system stability
基于近似动态规划的双馈风电场补充无功控制增强电力系统稳定性
- DOI:
10.1016/j.neucom.2015.03.089 - 发表时间:
2015-12 - 期刊:
- 影响因子:6
- 作者:
Guo Wentao;Feng Liu;Jennie Si;Dawei He;Ronald Harley;Shengwei Mei - 通讯作者:
Shengwei Mei
Ronald Harley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ronald Harley', 18)}}的其他基金
Collaborative Research: Planning Grant: I/UCRC for Real-Time Intelligence for Smart Electric Grid Operations (RISE)
合作研究:规划资助:I/UCRC 智能电网运营实时智能 (RISE)
- 批准号:
1464603 - 财政年份:2015
- 资助金额:
$ 39.88万 - 项目类别:
Standard Grant
Student Support for IEMDC 2013 Conference Participation. To be Held May 12-15,2013 in Chicago, IL.
学生参与 IEMDC 2013 会议的支持。
- 批准号:
1338551 - 财政年份:2013
- 资助金额:
$ 39.88万 - 项目类别:
Standard Grant
Collaborative Research: Computational Intelligence Methods For Dynamic Stochastic Optimization Of Smart Grid Operation With High Penetration Of Renewable Energy
合作研究:可再生能源高渗透智能电网运行动态随机优化的计算智能方法
- 批准号:
1232031 - 财政年份:2012
- 资助金额:
$ 39.88万 - 项目类别:
Standard Grant
Sequence component models to calculate fault current contributions from wind generators
用于计算风力发电机故障电流贡献的序列组件模型
- 批准号:
1028546 - 财政年份:2010
- 资助金额:
$ 39.88万 - 项目类别:
Standard Grant
Neural Networks for Estimating and Compensating the Nonlinear Characteristics of Nonstationary Complex Systems
用于估计和补偿非平稳复杂系统非线性特性的神经网络
- 批准号:
0601521 - 财政年份:2006
- 资助金额:
$ 39.88万 - 项目类别:
Standard Grant
Planning visit to Mexico: Intelligent Techniques to Operation, Control and Diagnosis of Power Plants and Power Systems Including FACTS Devices
计划访问墨西哥:包括FACTS设备在内的发电厂和电力系统的运行、控制和诊断的智能技术
- 批准号:
0519161 - 财政年份:2005
- 资助金额:
$ 39.88万 - 项目类别:
Standard Grant
Integrated Control of Wind Farms, Facts Devices and the Power Network Using Neural Networks and Adaptive Critic Designs
使用神经网络和自适应批评设计对风电场、事实设备和电力网络进行集成控制
- 批准号:
0524183 - 财政年份:2005
- 资助金额:
$ 39.88万 - 项目类别:
Standard Grant
Workshop on Global Dynamic Optimization of the Electric Power Grid in Atlanta, GA
佐治亚州亚特兰大电网全球动态优化研讨会
- 批准号:
0224592 - 财政年份:2002
- 资助金额:
$ 39.88万 - 项目类别:
Standard Grant
相似国自然基金
Neural Process模型的多样化高保真技术研究
- 批准号:62306326
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 39.88万 - 项目类别:
Research Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
$ 39.88万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
$ 39.88万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 39.88万 - 项目类别:
Standard Grant
SkyANN: Skyrmionic Artificial Neural Networks
SkyANN:Skyrmionic 人工神经网络
- 批准号:
10108371 - 财政年份:2024
- 资助金额:
$ 39.88万 - 项目类别:
EU-Funded
CAREER: Rethinking Spiking Neural Networks from a Dynamical System Perspective
职业:从动态系统的角度重新思考尖峰神经网络
- 批准号:
2337646 - 财政年份:2024
- 资助金额:
$ 39.88万 - 项目类别:
Continuing Grant
RII Track-4:@NASA: Automating Character Extraction for Taxonomic Species Descriptions Using Neural Networks, Transformer, and Computer Vision Signal Processing Architectures
RII Track-4:@NASA:使用神经网络、变压器和计算机视觉信号处理架构自动提取分类物种描述的字符
- 批准号:
2327168 - 财政年份:2024
- 资助金额:
$ 39.88万 - 项目类别:
Standard Grant
Neural Networks for Stationary and Evolutionary Variational Problems
用于稳态和进化变分问题的神经网络
- 批准号:
2424801 - 财政年份:2024
- 资助金额:
$ 39.88万 - 项目类别:
Continuing Grant
Organic optoelectronic neural networks
有机光电神经网络
- 批准号:
EP/Y020596/1 - 财政年份:2024
- 资助金额:
$ 39.88万 - 项目类别:
Research Grant
Inferring the evolution of functional connectivity over learning in large-scale neural recordings using low-tensor-rank recurrent neural networks
使用低张量秩递归神经网络推断大规模神经记录中功能连接学习的演变
- 批准号:
BB/Y513957/1 - 财政年份:2024
- 资助金额:
$ 39.88万 - 项目类别:
Research Grant














{{item.name}}会员




