Studies in Statistical Mechanics

统计力学研究

基本信息

  • 批准号:
    0802120
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-15 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY:This award supports theoretical research and education in a variety of subfields of statistical mechanics. This work is jointly supported by the Division of Materials Research and the Division of Mathematical Sciences. The central theme of the effort is a better understanding of the properties of macroscopic systems originating in the collective behavior of their microscopic constituents. The methods used range from exact mathematical analysis to computer simulations. These approaches bridge the gap between rigorous results and applications.Research topics employed by PI and collaborators are varied. Using mesoscopic free energy functionals allows investigation of periodic states, wetting in mixtures and droplet formation in supersaturated vapor. An ongoing effort continues on fluctuations and large deviations in nonequilibrium stationary states and partial currents. This includes cases where the hydrodynamic scaling is inadequate. Significant advance continue in fundamental studies such as establishing Fourier?s law of heat conduction in open systems with anharmonic interactions. In quantum statistical physics, the study of subsystems of large quantum systems leads to understanding of when these systems have density matrices given by canonical Gibbs measures. In some cases, such as the study of ionization of model quantum systems in time periodic fields, there are applications to laser induced transitions in atoms and molecules. Beyond physics, researchers also apply statistical mechanical methods to the mathematical study of epidemics taking into account correlations as well as saturation effects on networks. Extension of these techniques to models of population dynamics and ecology involves derivation of reaction-diffusion equations via scaling limits and these are planned investigations.The research activities are highly interdisciplinary, bringing together physicists, mathematicians, chemists and those working in theoretical areas of the biological and social sciences. The expected applications are in material science, complex fluids and in biological systems. The project also includes the organization of two conferences every year in which both core subjects and new developments in statistical mechanics are discussed in a collegial atmosphere. Graduate students, postdocs and minority scientists are involved and present talks on their work and interact with established researchers in the field. The conferences also serve as an opportunity for professional networking and can lead to new collaborations. NONTECHNICAL SUMMARY:This award supports theoretical research and education in a variety of subfields of statistical mechanics. This work is jointly supported by the Division of Materials Research and the Division of Mathematical Sciences. The central theme of the effort is a better understanding of the properties of material systems originating in the collective behavior of their elementary atomic constituents. The methods used range from exact mathematical analysis to computer simulations. These approaches bridge the gap between rigorous results and applications. Topics range from classical physics to quantum physics and highly formal to applications of technological relevance and even dynamics of disease propagation.The research activities are highly interdisciplinary, bringing together physicists, mathematicians, chemists and those working in theoretical areas of the biological and social sciences. The expected applications are in material science, complex fluids and in biological systems. The project also includes the organization of two conferences every year in which both core subjects and new developments in statistical mechanics are discussed in a collegial atmosphere. Graduate students, postdocs and minority scientists are involved and present talks on their work and interact with established researchers in the field. The conferences also serve as an opportunity for professional networking and can lead to new collaborations.
技术摘要:该奖项支持统计力学各个子领域的理论研究和教育。该工作得到材料研究部和数学科学部的共同支持。这项工作的中心主题是更好地理解源自其微观成分集体行为的宏观系统的特性。使用的方法范围从精确的数学分析到计算机模拟。这些方法弥合了严格结果和应用之间的差距。PI 和合作者采用的研究主题多种多样。 使用介观自由能泛函可以研究周期性状态、混合物中的润湿以及过饱和蒸汽中的液滴形成。我们正在继续研究非平衡稳态和部分电流的波动和大偏差。这包括流体动力学缩放不充分的情况。基础研究继续取得重大进展,例如在具有非调和相互作用的开放系统中建立傅里叶热传导定律。在量子统计物理学中,对大型量子系统子系统的研究有助于理解这些系统何时具有由规范吉布斯测度给出的密度矩阵。在某些情况下,例如研究时间周期场中模型量子系统的电离,可以应用于原子和分子中的激光诱导跃迁。除了物理学之外,研究人员还将统计力学方法应用于流行病的数学研究,同时考虑相关性以及网络的饱和效应。将这些技术扩展到种群动态和生态学模型涉及通过尺度限制推导反应扩散方程,这些都是有计划的研究。研究活动是高度跨学科的,汇集了物理学家、数学家、化学家以及生物和社会科学理论领域的工作人员。预期的应用是在材料科学、复杂流体和生物系统中。该项目还包括每年组织两次会议,在学术氛围中讨论统计力学的核心主题和新发展。研究生、博士后和少数族裔科学家参与其中,就他们的工作进行演讲,并与该领域的知名研究人员互动。这些会议还提供了专业交流的机会,并可以带来新的合作。非技术摘要:该奖项支持统计力学各个子领域的理论研究和教育。该工作得到材料研究部和数学科学部的共同支持。这项工作的中心主题是更好地理解源于其基本原子成分集体行为的材料系统的特性。使用的方法范围从精确的数学分析到计算机模拟。这些方法弥合了严格结果和应用之间的差距。 主题范围从经典物理学到量子物理学,从高度形式化到技术相关性的应用,甚至疾病传播的动力学。研究活动是高度跨学科的,汇集了物理学家、数学家、化学家以及生物和社会科学理论领域的工作人员。预期的应用是在材料科学、复杂流体和生物系统中。该项目还包括每年组织两次会议,在学术氛围中讨论统计力学的核心主题和新发展。研究生、博士后和少数族裔科学家参与其中,就他们的工作进行演讲,并与该领域的知名研究人员互动。这些会议还提供了专业交流的机会,并可以带来新的合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joel Lebowitz其他文献

Thermodynamic entropy production fluctuation in a two-dimensional shear flow model.
二维剪切流模型中的热力学熵产生波动。

Joel Lebowitz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joel Lebowitz', 18)}}的其他基金

Studies in Statistical Mechanics
统计力学研究
  • 批准号:
    1104501
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Studies in Statistical Mechanics
统计力学研究
  • 批准号:
    0442066
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Support of Travel by Junior Scientists to the International Conference on Theoretical Physics, Paris, 22-27 July, 2002
支持青年科学家参加 2002 年 7 月 22-27 日巴黎国际理论物理会议
  • 批准号:
    0225968
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Studies in Statistical Mechanics
统计力学研究
  • 批准号:
    0127926
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Studies in Statistical Mechanics
统计力学研究
  • 批准号:
    9813268
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Studies in Statistical Mechanics
统计力学研究
  • 批准号:
    9523266
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Statistical Mechanics
统计力学
  • 批准号:
    9213424
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Studies in Statistical Mechanics
统计力学研究
  • 批准号:
    8918903
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
U.S.-Brazil Cooperative Research on Interacting Particle Systems and Hydrodynamic Limits
美国-巴西关于相互作用粒子系统和流体动力学极限的合作研究
  • 批准号:
    8714944
  • 财政年份:
    1988
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Statistical Mechanics
统计力学
  • 批准号:
    8612369
  • 财政年份:
    1987
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

Further studies on SLE and two-dimensional models in statistical mechanics
统计力学中SLE和二维模型的进一步研究
  • 批准号:
    448257-2013
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Advanced numerical and analytical techniques for exact studies in combinatorics and statistical mechanics
用于组合数学和统计力学精确研究的先进数值和分析技术
  • 批准号:
    DP120101593
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Studies in Statistical Mechanics
统计力学研究
  • 批准号:
    1104501
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
STATISTICAL MECHANICS STUDIES OF STRUCTURE CHANGE AND SELF-AGGREGATION OF PROTE
蛋白质结构变化和自聚集的统计力学研究
  • 批准号:
    8364318
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
First-Principles Statistical Mechanics Studies of Doped Silicon Clusters: From Isolated Cages to Clusters in Complex Environments
掺杂硅团簇的第一性原理统计力学研究:从孤立的笼子到复杂环境中的团簇
  • 批准号:
    166525190
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Units
STATISTICAL MECHANICS STUDIES OF STRUCTURE CHANGE AND SELF-AGGREGATION OF PROTE
蛋白质结构变化和自聚集的统计力学研究
  • 批准号:
    8171934
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
Theoretical Studies in Far-From-Equilibrium Statistical Mechanics
远离平衡统计力学的理论研究
  • 批准号:
    0906601
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Statistical mechanics and monte carol studies of problems in physical chemistry
物理化学问题的统计力学和蒙特卡罗研究
  • 批准号:
    1299-2005
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Macroscopic and molecular-based studies in the statistical mechanics of fluids
流体统计力学的宏观和分子研究
  • 批准号:
    1041-2004
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Statistical mechanics and monte carol studies of problems in physical chemistry
物理化学问题的统计力学和蒙特卡罗研究
  • 批准号:
    1299-2005
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了