Fracture Mechanics of Nanowires and Nanostructures

纳米线和纳米结构的断裂力学

基本信息

  • 批准号:
    0802247
  • 负责人:
  • 金额:
    $ 19.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2009-08-31
  • 项目状态:
    已结题

项目摘要

The strength of an ideal crystal has long been of interest but 'real' materials have lower strengths because they have defects. Nanostructures can fail differently from larger structures, so studies of how nanostructures will break (fracture) provide an opportunity to connect the 'real' to the 'ideal'. This study of fracture in nanowires having novel structures that are important due to their electrical, thermal, and mechanical properties includes collaborators in the United States, Sweden, and South Korea who will provide nanowires for mechanical testing. A new microelectromechanical ('MEMS-based') mechanical loading stage that can operate inside a transmission electron microscope with sub-nanometer resolution will be used along with other tiny testing devices to find out what makes nanowires break. Nanowires may be used in nanoelectronics (as logic and memory and interconnect elements), as chemical sensing elements due to their high surface to volume ratio and exceptional sensitivity to surface interactions, in nanoelectromechanical systems (NEMS; as mechanical components, electromechanical components, actuators, strain gauges, flow sensors, others), and in structural composites where the crystalline perfection of nanowires is expected to confer exceptional stiffness, strength, and toughness. It is thus important to understand the detailed mechanics of single crystal nanowires so a base of knowledge can be available for their subsequent use in diverse applications where mechanical stress will be present. This effort includes research programs for graduate students and postdoctoral fellows, summer research training for undergraduate students and high school teachers, and other educational activities.
理想晶体的强度长期以来一直受到人们的关注,但“真实的”材料由于存在缺陷而具有较低的强度。纳米结构的失效方式可能与较大结构不同,因此研究纳米结构如何断裂(断裂)提供了一个将“真实的”与“理想的”联系起来的机会。这项对具有新颖结构的纳米线断裂的研究由于其电学,热学和机械性能而非常重要,包括美国,瑞典和韩国的合作者,他们将提供纳米线进行机械测试。一种新的微机电(“基于MEMS”)机械加载平台,可以在透射电子显微镜内操作,具有亚纳米分辨率,将与其他微小的测试设备一起沿着使用,以找出是什么使纳米线断裂。纳米线可用于纳米电子学(作为逻辑和存储器和互连元件),由于它们的高表面体积比和对表面相互作用的异常敏感性,在纳米机电系统中作为化学传感元件,(NEMS;作为机械部件、机电部件、致动器、应变仪、流量传感器等),以及在结构复合材料中,其中纳米线的晶体完美性预期赋予优异的刚度、强度和韧性。因此,重要的是要了解单晶纳米线的详细力学,以便知识基础可以用于其随后在机械应力将存在的各种应用中的使用。这项工作包括研究生和博士后研究员的研究计划,本科生和高中教师的夏季研究培训,以及其他教育活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rodney Ruoff其他文献

Evaluation of Load Transfer Properties in Carbon Nanotube-Alumina Composites Using Single Fiber Pullout Experiments
使用单纤维拉拔实验评估碳纳米管-氧化铝复合材料的载荷传递性能
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Go Yamamoto;Toshiyuki Hashida;Toshiyuki Takagi;Jiwon Suk;Jinho An;Richard Piner;Rodney Ruoff
  • 通讯作者:
    Rodney Ruoff

Rodney Ruoff的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rodney Ruoff', 18)}}的其他基金

Synthesis and Detailed Chemical Structure of Isotopically Enriched Graphite Oxide, Reduce Graphene Oxides, and Chemically Modified Graphenes
同位素富集氧化石墨、还原氧化石墨烯和化学改性石墨烯的合成和详细化学结构
  • 批准号:
    1206986
  • 财政年份:
    2012
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
Mechanical Characterization of Atomically Thin Membranes
原子薄膜的机械表征
  • 批准号:
    0969106
  • 财政年份:
    2010
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Synthesis and Characterization of Single-layer Graphene Films with Large Lateral Dimensions
合作研究:大横向尺寸单层石墨烯薄膜的合成与表征
  • 批准号:
    1006350
  • 财政年份:
    2010
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Continuing Grant
Graphene-based Materials for Ultracapacitance Applications
用于超级电容应用的石墨烯基材料
  • 批准号:
    0907324
  • 财政年份:
    2009
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Exploration of Graphene-Nanocrystal Metamaterials
合作研究:石墨烯-纳米晶超材料的探索
  • 批准号:
    0900569
  • 财政年份:
    2009
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Study of Conformational States in Low-Dimensional Carbon Nanostructures
合作研究:低维碳纳米结构构象态的综合研究
  • 批准号:
    0700075
  • 财政年份:
    2007
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Study of Conformational States in Low-Dimensional Carbon Nanostructures
合作研究:低维碳纳米结构构象态的综合研究
  • 批准号:
    0742065
  • 财政年份:
    2007
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
IMR: Development of a TEM Testing Stage with Atomic Position Resolution for Student Training, Education, and Research
IMR:开发具有原子位置分辨率的 TEM 测试平台,用于学生培训、教育和研究
  • 批准号:
    0809039
  • 财政年份:
    2007
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
Fracture Mechanics of Nanowires and Nanostructures
纳米线和纳米结构的断裂力学
  • 批准号:
    0625085
  • 财政年份:
    2006
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
IMR: Development of a TEM Testing Stage with Atomic Position Resolution for Student Training, Education, and Research
IMR:开发具有原子位置分辨率的 TEM 测试平台,用于学生培训、教育和研究
  • 批准号:
    0526959
  • 财政年份:
    2005
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant

相似国自然基金

Science China-Physics, Mechanics & Astronomy
  • 批准号:
    11224804
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323415
  • 财政年份:
    2024
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331294
  • 财政年份:
    2024
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
CAREER: The Contagion Science: Integration of inhaled transport mechanics principles inside the human upper respiratory tract at multi scales
职业:传染病科学:在多尺度上整合人类上呼吸道内的吸入运输力学原理
  • 批准号:
    2339001
  • 财政年份:
    2024
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Continuing Grant
Exploration of the Nonequilibrium Statistical Mechanics of Turbulent Collisionless Plasmas
湍流无碰撞等离子体的非平衡统计力学探索
  • 批准号:
    2409316
  • 财政年份:
    2024
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Continuing Grant
Unravelling coupling between multiscale tissue mechanics and heart valve calcification
揭示多尺度组织力学与心脏瓣膜钙化之间的耦合
  • 批准号:
    EP/X027163/2
  • 财政年份:
    2024
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Fellowship
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
CLIMA: Nimble, Adaptive, and Reusable Structures (NARS): Systems, Mechanics, and Financing
CLIMA:灵活、自适应和可重复使用的结构 (NARS):系统、力学和融资
  • 批准号:
    2331994
  • 财政年份:
    2024
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
The mechanics of pollinator attraction: development and function of floral diffraction gratings
传粉媒介吸引机制:花衍射光栅的发展和功能
  • 批准号:
    BB/Y003896/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Research Grant
Towards preservation of the natural knee: State-of-the-art approaches to understand the kinematics and tissue mechanics of human menisci in vivo.
保护自然膝盖:了解体内人体半月板运动学和组织力学的最先进方法。
  • 批准号:
    EP/Y002415/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Research Grant
Control of endothelial cell mechanics and blood vessel remodeling by blood flow
通过血流控制内皮细胞力学和血管重塑
  • 批准号:
    23K23887
  • 财政年份:
    2024
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了