IMR: Development of a TEM Testing Stage with Atomic Position Resolution for Student Training, Education, and Research

IMR:开发具有原子位置分辨率的 TEM 测试平台,用于学生培训、教育和研究

基本信息

  • 批准号:
    0809039
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2009-08-31
  • 项目状态:
    已结题

项目摘要

The ultimate cohesive strength of an ideal, defect-free crystalline solid has long been an interesting theoretical abstraction: 'real' materials never exhibit their ideal strengths due to ever-present defects. However, mechanical failure in nanostructures is qualitatively and quantitatively distinct from the failure behavior of bulk materials, thus providing a tremendous opportunity to connect the 'real' to the 'ideal'Recent developments in the synthesis, characterization, and modeling of nanostructures warrant the development of an instrument that will operate in conjunction with high-resolution transmission electron microscopy, and will enable a comprehensive study of fracture in, e.g., semiconductor and insulator nanowires, and single walled carbon nanotubes. A novel TEM MEMS-based mechanical loading stage with sub-Angstrom-level resolution is proposed. The hardware of the proposed instrument consists of five components: a compliant transmission mechanism, a motion actuator, a MEMS specimen holder (coupon), a TEM holder, and a position control system. This instrument will allow study of material systems that are of fundamental interest due to their novel structure, and of practical importance due to their electrical, thermal, and mechanical properties. We propose (i) to develop and fabricate this new instrumentation (ii) to develop robust methods for configuring nanowires and nanotubes onto testing platforms (iii) to perform preliminary experimental measurements of the mechanics of nanostructures to verify system performance, and (iv) to interact with experts in multiscale theory and modeling that combines electronic structure, molecular mechanics and continuum mechanics calculations, who have an intense interest in the proposed instrument and the measurements it can perform. The proposed team has the skills necessary to design, fabricate, test, and use the TEM MEMS-based testing stage, for the study of materials response under mechanical load, and of fracture and fatigue of nanostructures having zero to a few atomic-scale defects. The importance of a fundamental understanding of fracture and fatigue in nanowires is underscored by the broad range of potential applications envisioned for Si, Ge, doped Si and Ge nanowires, as well as nanowires of modulated composition such as 'striped' and core-shell structures, TiO2 nanowires, and single walled carbon nanotubes. A new instrument and important new methods will result, to address the influence of defects, interfaces, chemical environment, cyclic mechanical loading (fatigue), strain rate, and the presence of an electric current, on the fracture mechanics of nanowires. It is envisioned that nanowires (100 times smaller in diameter than a hair) will be used in a host of important applications, such as in nanoelectronics (as logic and memory and interconnect elements), as chemical sensing elements due to their high surface to volume ratio and exceptional sensitivity to surface interactions, in nanoelectromechanical systems (NEMS; as mechanical components, electromechanical components, actuators, strain gauges, flow sensors, others), in structural composites where the crystalline perfection of single crystal nanowires is expected to confer exceptional stiffness, strength, and toughness, and potentially in energy conversion devices (as thermoelectric elements). It is for these reasons, among others, that it is critically important to understand the detailed mechanics of single crystal nanowires and their failure behavior. An understanding of nanowire fracture (how a material breaks) and fatigue (how a material that is repeatedly loaded, for example, eventually will fail) will provide an important base of knowledge for their subsequent use in diverse applications where mechanical stress will be present.This work will have a strong impact on novel instrumentation, which will be further developed and sold in the United States. The TEM MEMS-based testing stage (this is a tiny testing stage that can fit into a transmission electron microscope and has microelectromechanical systems components that allow it to function), and studies of the mechanical response of individual nanowires, will capture the imagination of scientists and engineers around the World, so that an international effort on mechanics of nanostructures will be ignited. This same "capturing of the imagination" of scientists and engineers and the general public will mean that the work outlined here will provide textbook examples of the use of clever engineering to develop instruments that can controllably deform nanostructures at such fine levels of control, and of fundamental studies of mechanical response, fracture, and fatigue that result from such approaches. This instrument development effort includes a significant program in education outreach, including research programs for graduate students and postdoctoral fellows, summer research training for undergraduate (including minority) students and high school teachers, additions to course materials being offered both in chemistry and engineering courses, and curriculum development for grades 7-12 in coordination with the NSF Center for Learning and Teaching in Nanoscale Science and Engineering centered at Northwestern University. There is also a plan for the important second phase of technology transition to interested companies, and thus of follow through to ensure that such instrumentation will be available to researchers in the USA and around the World, for rapid acceleration of their use. This will increase the rate of creation of databases of important mechanical and electromechanical properties of nanowires, which will also accelerate their use in important applications.
理想的、无缺陷的结晶固体的极限内聚强度长期以来一直是一个有趣的理论抽象:“真实的”材料由于始终存在的缺陷而永远不会表现出它们的理想强度。然而,纳米结构中的机械失效在定性和定量上与体材料的失效行为不同,从而提供了将“真实的”与“理想的”连接起来的巨大机会。纳米结构的合成、表征和建模的最新发展保证了将与高分辨率透射电子显微镜结合操作的仪器的开发,并且将使得能够对断裂进行全面的研究,例如,半导体和绝缘体纳米线以及单壁碳纳米管。提出了一种基于TEM MEMS的亚埃级分辨率机械加载平台。该仪器的硬件由五个部分组成:一个顺应性的传输机制,一个运动致动器,MEMS试样保持器(试样),TEM保持器,和一个位置控制系统。 该仪器将允许研究材料系统,这些材料系统因其新颖的结构而具有根本意义,并因其电、热和机械性能而具有实际重要性。我们建议(i)开发和制造这种新仪器(ii)开发将纳米线和纳米管配置到测试平台上的稳健方法(iii)对纳米结构的力学进行初步实验测量以验证系统性能,以及(iv)与多尺度理论和建模专家互动,结合电子结构,分子力学和连续介质力学计算,他们对所提出的仪器及其可以进行的测量有着浓厚的兴趣。拟议的团队具有设计,制造,测试和使用基于TEM MEMS的测试阶段所需的技能,用于研究机械负载下的材料响应,以及具有零到几个原子级缺陷的纳米结构的断裂和疲劳。断裂和疲劳的纳米线的基本理解的重要性是强调了广泛的潜在应用设想的Si,Ge,掺杂的Si和Ge纳米线,以及纳米线的调制组合物,如“条纹”和核壳结构,TiO 2纳米线,和单壁碳纳米管。一种新的仪器和重要的新方法将导致,以解决缺陷,界面,化学环境,循环机械载荷(疲劳),应变率,和电流的存在下,对纳米线的断裂力学的影响。据设想,纳米线(直径比头发丝小100倍)将用于许多重要应用,如纳米电子学(作为逻辑和存储器和互连元件),由于它们的高表面体积比和对表面相互作用的异常敏感性,在纳米机电系统中作为化学传感元件,(NEMS;作为机械部件、机电部件、致动器、应变仪、流量传感器等),在结构复合材料中,其中单晶纳米线的晶体完整性被期望赋予特殊的刚度、强度和韧性,并且可能用于能量转换装置(如热电元件)。正是由于这些原因,除其他外,理解单晶纳米线的详细力学及其失效行为至关重要。对纳米线断裂(材料如何断裂)和疲劳(例如,反复加载的材料最终如何失效)的理解将为它们随后在存在机械应力的各种应用中的使用提供重要的知识基础。这项工作将对新型仪器产生重大影响,这些仪器将在美国进一步开发和销售。 基于TEM MEMS的测试平台(这是一个可以安装到透射电子显微镜中的微小测试平台,并具有允许其发挥作用的微机电系统组件),以及对单个纳米线的机械响应的研究,将吸引世界各地的科学家和工程师的想象力,因此国际上对纳米结构力学的努力将被点燃。同样的“捕捉想象力”的科学家和工程师和公众将意味着,这里概述的工作将提供教科书的例子,使用聪明的工程开发仪器,可以可控地变形纳米结构在这样的精细控制水平,和基础研究的机械响应,断裂,疲劳,结果从这样的方法。该仪器开发工作包括一个重要的教育推广计划,包括研究生和博士后研究员的研究计划,本科生的夏季研究培训,(包括少数民族)学生和高中教师,化学和工程课程提供的课程材料的补充,和课程开发7-12年级与NSF中心的纳米科学和工程中心的学习和教学协调在西北大学。还有一个重要的第二阶段的计划,即向感兴趣的公司进行技术过渡,从而确保美国和世界各地的研究人员能够使用这种仪器,以迅速加速其使用。 这将提高纳米线重要机械和机电特性数据库的创建速度,这也将加速它们在重要应用中的使用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rodney Ruoff其他文献

Evaluation of Load Transfer Properties in Carbon Nanotube-Alumina Composites Using Single Fiber Pullout Experiments
使用单纤维拉拔实验评估碳纳米管-氧化铝复合材料的载荷传递性能
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Go Yamamoto;Toshiyuki Hashida;Toshiyuki Takagi;Jiwon Suk;Jinho An;Richard Piner;Rodney Ruoff
  • 通讯作者:
    Rodney Ruoff

Rodney Ruoff的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rodney Ruoff', 18)}}的其他基金

Synthesis and Detailed Chemical Structure of Isotopically Enriched Graphite Oxide, Reduce Graphene Oxides, and Chemically Modified Graphenes
同位素富集氧化石墨、还原氧化石墨烯和化学改性石墨烯的合成和详细化学结构
  • 批准号:
    1206986
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mechanical Characterization of Atomically Thin Membranes
原子薄膜的机械表征
  • 批准号:
    0969106
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Synthesis and Characterization of Single-layer Graphene Films with Large Lateral Dimensions
合作研究:大横向尺寸单层石墨烯薄膜的合成与表征
  • 批准号:
    1006350
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Graphene-based Materials for Ultracapacitance Applications
用于超级电容应用的石墨烯基材料
  • 批准号:
    0907324
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Exploration of Graphene-Nanocrystal Metamaterials
合作研究:石墨烯-纳米晶超材料的探索
  • 批准号:
    0900569
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Study of Conformational States in Low-Dimensional Carbon Nanostructures
合作研究:低维碳纳米结构构象态的综合研究
  • 批准号:
    0700075
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Fracture Mechanics of Nanowires and Nanostructures
纳米线和纳米结构的断裂力学
  • 批准号:
    0802247
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Study of Conformational States in Low-Dimensional Carbon Nanostructures
合作研究:低维碳纳米结构构象态的综合研究
  • 批准号:
    0742065
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Fracture Mechanics of Nanowires and Nanostructures
纳米线和纳米结构的断裂力学
  • 批准号:
    0625085
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
IMR: Development of a TEM Testing Stage with Atomic Position Resolution for Student Training, Education, and Research
IMR:开发具有原子位置分辨率的 TEM 测试平台,用于学生培训、教育和研究
  • 批准号:
    0526959
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Career development of teachers in Japanese schools abroad: Auto-TEM for describing environmental transitions and understanding of self and others
海外日本学校教师的职业发展:用于描述环境转变以及对自我和他人的理解的 Auto-TEM
  • 批准号:
    22K13714
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of novel operando catalytic reaction measurement system by atomic-level TEM observation and mass spectroscopy
通过原子级TEM观察和质谱开发新型原位催化反应测量系统
  • 批准号:
    19K22102
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of MEMS Experimental System for in-situ TEM Measurement of mechanical and Thermal Properties in Nano-scale
开发用于纳米级机械和热性能原位 TEM 测量的 MEMS 实验系统
  • 批准号:
    17H01049
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of Active-modulation Environmental TEM technique for Operando Observations of "Pure" Dynamics of Chemical Reactions
开发用于化学反应“纯”动力学操作观测的主动调制环境 TEM 技术
  • 批准号:
    17H02743
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on ReRAM circuit operation using in-situ TEM for development of artificial neurons
使用原位 TEM 研究 ReRAM 电路操作以开发人工神经元
  • 批准号:
    16H04339
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of in situ electrochemical high resolution TEM system using ionic liquid
使用离子液体开发原位电化学高分辨率TEM系统
  • 批准号:
    15K13287
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Development of a bimodal near-infrared luminescent/TEM Platinum nanoprobes for in vivo imeging: Toward a better understanding of cancer metastasis
开发用于体内成像的双峰近红外发光/TEM 铂纳米探针:更好地了解癌症转移
  • 批准号:
    15H05354
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Development of Kv1.3 Monoclonal Antibodies Targeting TEM Cells for Treating Autoimmune Disorders
开发针对 TEM 细胞的 Kv1.3 单克隆抗体用于治疗自身免疫性疾病
  • 批准号:
    10374043
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
Development of nanoscale thermal conductivity measurement method in TEM
TEM纳米级热导率测量方法的发展
  • 批准号:
    26820287
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development of Kv1.3 Monoclonal Antibodies Targeting TEM Cells for Treating Autoimmune Disorders
开发针对 TEM 细胞的 Kv1.3 单克隆抗体用于治疗自身免疫性疾病
  • 批准号:
    9906631
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了