Commutative Algebra: Connections with Algebraic Topology and Representation Theory, May 17-22, 2008, Lincoln, Nebraska
交换代数:与代数拓扑和表示论的联系,2008 年 5 月 17-22 日,内布拉斯加州林肯
基本信息
- 批准号:0802900
- 负责人:
- 金额:$ 2.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-02-01 至 2009-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT The conference will highlight recent developments in commutative algebra, as well as its interactions with algebraic topology, group cohomology and representation theory. The conference will take place May 17-22, 2008 at the University of Nebraska-Lincoln. The choice of topics and the selection of speakers recognizes the research contributions of Luchezar Avramov, as well as his many contributions to his students and postdoctoral mentees. The conference will feature 20 one-hour lectures by internationally recognized researchers, plus 9-10 shorter talks by mathematically younger participants. In order to avoid parallel sessions and to allow ample time for informal mathematical interaction among the participants, the number of talks will be limited to 30. About 130 participants are expected from outside the University of Nebraska, in addition to about 25 local participants. Partial support for travel and lodging will be provided for domestic participants, with emphasis on mathematically young participants (early career and graduate students). Participation by women and by members of underrepresented minorities will be particularly encouraged. The field of commutative algebra is in a period of profound transformation. While its roots in algebraic geometry continue to supply tools, problems and intuition to commutative algebra itself, new connections to other areas have been discovered in the last twenty years. Currently commutative algebraists are involved in intense interactions with researchers in homotopy theory, cohomology of finite groups and representation theory. The conference will feature one-hour talks by twenty top researchers, eleven of them in commutative algebra per se, five in algebraic topology and rational homotopy theory, and four in representation theory and group cohomology. Many other researchers, established leaders, recent Ph.D.'s and advanced graduate students, will join these twenty main speakers for a week of intense mathematical interaction. One can expect many new insights, collaborations and discoveries as a result of this gathering. The conference will help recent Ph.D.'s and graduate students to (i) interact with leading researchers in algebra, (ii) learn about recent developments in commutative algebra and related fields, (iii) exchange ideas with one another and (iv) develop collaborations for future research. Graduate students will gain insights and perspectives that may be lacking at their home institutions. Postdoctoral scholars, recent Ph.D.'s, and researchers at institutions where teaching is the primary focus, will bring to their professions an enhanced enthusiasm for research and a better understanding of important recent developments in algebra.
会议将突出交换代数的最新发展,以及它与代数拓扑,群上同调和表示论的相互作用。会议将于2008年5月17日至22日在内布拉斯加大学林肯分校举行。主题的选择和演讲者的选择认可了Luchezar Avramov的研究贡献,以及他对学生和博士后学员的许多贡献。会议将有20个由国际知名研究人员进行的一小时讲座,以及9-10个由数学年轻参与者进行的简短演讲。为了避免平行会议,并让与会者有足够的时间进行非正式的数学互动,讲座的数量将限制在30场。预计约有130名与会者来自内布拉斯加大学以外,此外还有约25名当地与会者。将为国内参与者提供部分差旅和住宿支助,重点是数学上年轻的参与者(早期职业和研究生)。 将特别鼓励妇女和代表性不足的少数群体成员的参与。交换代数领域正处于一个深刻变革的时期。虽然它在代数几何中的根源继续为交换代数本身提供工具,问题和直觉,但在过去的二十年中,与其他领域的新联系已经被发现。目前,交换代数学家与同伦理论、有限群上同调和表示论的研究者有着密切的联系。会议将有20名顶级研究人员进行一小时的演讲,其中11人在交换代数本身,5人在代数拓扑和有理同伦理论,4人在表示论和群上同调。许多其他研究人员,建立领导者,最近的博士学位。的和高级研究生,将加入这二十个主要发言人的一个星期的激烈的数学互动。人们可以期待许多新的见解,合作和发现作为这次聚会的结果。这次会议将有助于最近的博士学位。的和研究生(i)互动与领先的研究人员在代数,(ii)了解最近的发展,交换代数和相关领域,(iii)相互交流思想和(iv)发展合作,为未来的研究。 研究生将获得在他们的家乡机构可能缺乏的见解和观点。 博士后学者,最近的博士学位。的,和研究人员在机构的教学是主要的重点,将带来他们的职业增强的热情,研究和更好地了解重要的最新发展代数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roger Wiegand其他文献
Vanishing tensor powers of modules
- DOI:
10.1007/bf01181623 - 发表时间:
1972-12-01 - 期刊:
- 影响因子:1.000
- 作者:
Roger Wiegand;Sylvia Wiegand - 通讯作者:
Sylvia Wiegand
Bounding the number of generators of a module
- DOI:
10.1007/bf01214784 - 发表时间:
1978-02-01 - 期刊:
- 影响因子:1.000
- 作者:
Wolmer Vasconcelos;Roger Wiegand - 通讯作者:
Roger Wiegand
Lower bounds for Betti numbers over fiber product rings
纤维产品环上贝蒂数的下限
- DOI:
10.1080/00927872.2023.2228418 - 发表时间:
2023 - 期刊:
- 影响因子:0.7
- 作者:
T. H. Freitas;V. H. J. Pérez;Roger Wiegand;Silvia Wiegand - 通讯作者:
Silvia Wiegand
Picard groups of singular affine curves over a perfect field
- DOI:
10.1007/bf01215648 - 发表时间:
1989-09-01 - 期刊:
- 影响因子:1.000
- 作者:
Roger Wiegand - 通讯作者:
Roger Wiegand
Roger Wiegand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roger Wiegand', 18)}}的其他基金
Depth Properties of Modules Over Local Rings
本环上模块的深度特性
- 批准号:
9801309 - 财政年份:1998
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Topics in Commutative Algebra and Algebraic Geometry
交换代数和代数几何专题
- 批准号:
9709757 - 财政年份:1997
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Commutative Algebra and Algebraic Geometry
数学科学:交换代数和代数几何主题
- 批准号:
9307289 - 财政年份:1993
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Field Theory and Picard Groups
数学科学:场论和皮卡德群
- 批准号:
9215003 - 财政年份:1993
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Commutative Algebra and Algebraic Geometry
数学科学:交换代数和代数几何主题
- 批准号:
9106739 - 财政年份:1991
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Midwest/Great Plains Workshops in Commutative Algebra
中西部/大平原交换代数研讨会
- 批准号:
8909612 - 财政年份:1989
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Torsionfree Modules over Affine Coordinate Rings
数学科学:仿射坐标环上的无扭模
- 批准号:
8701243 - 财政年份:1987
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
MATHEMATICAL SCIENCES: Torsionfree Modules over Noetherian Rings
数学科学:诺特环上的无扭模
- 批准号:
8401600 - 财政年份:1984
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
相似海外基金
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
- 批准号:
559329-2021 - 财政年份:2022
- 资助金额:
$ 2.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
- 批准号:
559329-2021 - 财政年份:2021
- 资助金额:
$ 2.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Connections between Advanced and Secondary Mathematics: Exploring the Impact of Abstract Algebra on the Teaching and Learning of Secondary Mathematics
高等数学与中学数学的联系:探讨抽象代数对中学数学教学的影响
- 批准号:
1830121 - 财政年份:2019
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Combinatorial Connections with Algebra, Geometry, Probability and Applications
与代数、几何、概率和应用的组合联系
- 批准号:
1764012 - 财政年份:2018
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Connections between knot theory and quantum algebra
结理论与量子代数之间的联系
- 批准号:
404538-2011 - 财政年份:2013
- 资助金额:
$ 2.5万 - 项目类别:
Postdoctoral Fellowships
Connections Between Algebra and Geometry
代数与几何之间的联系
- 批准号:
1200313 - 财政年份:2012
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Connections between knot theory and quantum algebra
结理论与量子代数之间的联系
- 批准号:
404538-2011 - 财政年份:2012
- 资助金额:
$ 2.5万 - 项目类别:
Postdoctoral Fellowships
Connections between knot theory and quantum algebra
结理论与量子代数之间的联系
- 批准号:
404538-2011 - 财政年份:2011
- 资助金额:
$ 2.5万 - 项目类别:
Postdoctoral Fellowships
Total positivity: connections with algebra, topology, and statistical physics.
总体积极性:与代数、拓扑和统计物理学的联系。
- 批准号:
0854432 - 财政年份:2009
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant