Combinatorial Connections with Algebra, Geometry, Probability and Applications
与代数、几何、概率和应用的组合联系
基本信息
- 批准号:1764012
- 负责人:
- 金额:$ 18.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Combinatorics is an area of mathematics which is quintessential for applications in computer science, biology, physics, chemistry, and industry. Optimized algorithms based on combinatorics have revolutionized business decisions in our lifetime. Current research is uncovering connections to all areas of mathematics and science. This project focuses specifically on interdisciplinary applications of combinatorics in connection with problems in algebra,geometry, probability, and computer science. Combinatorial connections have been at the core of the investigator's prior work and continue to inspire innovation and collaboration. This project describes three main themes for research. The first relates to the classical study of the coinvariant algebra and its representation theory. The problem is to study the asymptotics of the underlying decomposition into irreducible symmetric group modules. The methods of attack include tools from combinatorics, algebra and probability theory. The second studies a newly proposed family of symmetric functions related to the matroid of 0-1 vectors in n-dimensional space. Conjectures and theorems in this direction use tools from algebraic geometry. This research has connections to physics and economics. The third topic, which is a mixture of combinatorics, theoretical computer science and discrete geometry, pertains to placements of circles in the plane with a wrapping condition. This area of research was inspired by the general discrete geometry problem of finding an appropriate polygonization of a region in the plane which appears in graphics and optimization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
组合数学是数学的一个领域,是计算机科学、生物学、物理学、化学和工业应用的精髓。基于组合学的优化算法已经彻底改变了我们一生中的商业决策。 目前的研究正在揭示与数学和科学所有领域的联系。该项目特别关注组合数学在代数、几何、概率和计算机科学中的跨学科应用。组合连接一直是研究人员先前工作的核心,并继续激励创新和协作。 该项目描述了三个主要的研究主题。 第一部分是关于共不变代数及其表示理论的经典研究。问题是研究基本分解为不可约对称群模的渐近性。攻击的方法包括组合学、代数学和概率论的工具。 第二部分研究了n维空间中与0-1向量拟阵有关的一类新的对称函数族。 这方面的猜想和定理使用代数几何的工具。这项研究与物理学和经济学有关。 第三个主题,这是一个组合,理论计算机科学和离散几何的混合物,涉及到在平面上的包装条件的圆的位置。 这一领域的研究受到了一般离散几何问题的启发,即在图形和优化中找到平面上某个区域的适当分解。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pop-stack sorting and its image: Permutations with overlapping runs
- DOI:
- 发表时间:2019-07
- 期刊:
- 影响因子:0
- 作者:Andrei Asinowski;C. Banderier;Sara C. Billey;Benjamin Hackl;Svante Linusson
- 通讯作者:Andrei Asinowski;C. Banderier;Sara C. Billey;Benjamin Hackl;Svante Linusson
A Pattern Avoidance Characterization for Smoothness of Positroid Varieties
正类品种平滑度的模式避免表征
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Billey, Sara C.;Weaver, Jordan E.
- 通讯作者:Weaver, Jordan E.
Existence and Hardness of Conveyor Belts
输送带的存在与硬度
- DOI:10.37236/9782
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Baird, Molly;Billey, Sara;Demaine, Erik;Demaine, Martin;Eppstein, David;Fekete, Sándor;Gordon, Graham;Griffin, Sean;Mitchell, Joseph;Swanson, Joshua
- 通讯作者:Swanson, Joshua
Asymptotic normality of the major index on standard tableaux
标准画面上主要指标的渐近正态性
- DOI:10.1016/j.aam.2019.101972
- 发表时间:2020
- 期刊:
- 影响因子:1.1
- 作者:Billey, Sara C.;Konvalinka, Matjaž;Swanson, Joshua P.
- 通讯作者:Swanson, Joshua P.
Boolean Product Polynomials, Schur Positivity, and Chern Plethysm
布尔积多项式、Schur 正性和 Chern 体积
- DOI:10.1093/imrn/rnz261
- 发表时间:2019
- 期刊:
- 影响因子:1
- 作者:Billey, Sara C.;Rhoades, Brendon;Tewari, Vasu
- 通讯作者:Tewari, Vasu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sara Billey其他文献
Vexillary Elements in the Hyperoctahedral Group
超八面体群中的Vexillary单元
- DOI:
10.1023/a:1008633710118 - 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Sara Billey;Tao Kai Lam - 通讯作者:
Tao Kai Lam
Sara Billey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sara Billey', 18)}}的其他基金
Combinatorial and Algebraic Aspects of Varieties
品种的组合和代数方面
- 批准号:
1101017 - 财政年份:2011
- 资助金额:
$ 18.73万 - 项目类别:
Continuing Grant
Computational/Combinatorial Considerations In Topology, Coxeter Groups, and Representation Theory
拓扑、Coxeter 群和表示论中的计算/组合考虑
- 批准号:
0800978 - 财政年份:2008
- 资助金额:
$ 18.73万 - 项目类别:
Continuing Grant
PECASE: Combinatorial Structures in Algebra and Geometry
PECASE:代数和几何中的组合结构
- 批准号:
0437359 - 财政年份:2003
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant
PECASE: Combinatorial Structures in Algebra and Geometry
PECASE:代数和几何中的组合结构
- 批准号:
9983797 - 财政年份:2000
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant
Mathematical Sciences: Random Tilings
数学科学:随机平铺
- 批准号:
9500936 - 财政年份:1995
- 资助金额:
$ 18.73万 - 项目类别:
Continuing Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9407500 - 财政年份:1994
- 资助金额:
$ 18.73万 - 项目类别:
Fellowship Award
相似海外基金
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
- 批准号:
559329-2021 - 财政年份:2022
- 资助金额:
$ 18.73万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
- 批准号:
559329-2021 - 财政年份:2021
- 资助金额:
$ 18.73万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Connections between Advanced and Secondary Mathematics: Exploring the Impact of Abstract Algebra on the Teaching and Learning of Secondary Mathematics
高等数学与中学数学的联系:探讨抽象代数对中学数学教学的影响
- 批准号:
1830121 - 财政年份:2019
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant
Connections between knot theory and quantum algebra
结理论与量子代数之间的联系
- 批准号:
404538-2011 - 财政年份:2013
- 资助金额:
$ 18.73万 - 项目类别:
Postdoctoral Fellowships
Connections Between Algebra and Geometry
代数与几何之间的联系
- 批准号:
1200313 - 财政年份:2012
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant
Connections between knot theory and quantum algebra
结理论与量子代数之间的联系
- 批准号:
404538-2011 - 财政年份:2012
- 资助金额:
$ 18.73万 - 项目类别:
Postdoctoral Fellowships
Connections between knot theory and quantum algebra
结理论与量子代数之间的联系
- 批准号:
404538-2011 - 财政年份:2011
- 资助金额:
$ 18.73万 - 项目类别:
Postdoctoral Fellowships
Total positivity: connections with algebra, topology, and statistical physics.
总体积极性:与代数、拓扑和统计物理学的联系。
- 批准号:
0854432 - 财政年份:2009
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant
Investigating connections between homotopy theory and algebra
研究同伦理论和代数之间的联系
- 批准号:
0905888 - 财政年份:2009
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant