RUI: Manifolds with Density and Isoperimetric Problems

RUI:具有密度和等周问题的流形

基本信息

  • 批准号:
    0803168
  • 负责人:
  • 金额:
    $ 14.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

Frank Morgan and his students will study manifolds with density, a generalization of Riemannian manifolds, long prominent in probability and of rapidly growing interest in geometry and applications. The density function weights volume and area equally, unlike a conformal change of metric. Manifolds with density are the smooth case of Gromov's mm spaces, although we also consider singularities. The grand goal is to generalize appropriate parts of Riemannian geometry to manifolds with density. Advances should improve our understanding of Riemannian geometry; for example, Ricci curvature has many different generalizations to manifolds with density, which just happen to coincide for Riemannian manifolds. Isoperimetric problems provide an excellent entry point. Isoperimetric theorems on Gauss space, the premier example of a manifold with density, have had applications in probability theory, in isoperimetric problems in Riemannian geometry, and specifically in Perelman's work on the Poincaré Conjecture. Methods will include standard and innovative applications of geometric measure theory, Riemannian geometry, and second variation. Spaces with singularities are central to theory and applications, and isoperimetric problems once again provide an excellent entry point. The density we consider on a ann-dimensional manifold (such as a 2-dimensional surface or a 3-dimensional universe, perhaps with singularities), is the same kind of density one considers in freshman physics, a weighting that varies from point to point. Such densities arise naturally throughout mathematics; recent applications include Brownian motion in physics, stock option pricing, and Perelman's work on the Poincaré Conjecture. Studying this natural generalization provides new insights into classical geometry. As one important example, for the classical geometry of unit density, the _isoperimetric problem_, central to geometry research since the time of the Ancient Greeks, seeks a region of given volume of least perimeter; in Euclidean space, the solution is a round ball. On a manifold with variable density, the isoperimetric problem seeks the region of given weighted volume of least weighted perimeter. Work in the more general context provides new results in the classical context. Morgan's undergraduate research students have solved interesting sample cases and are continuing the work. Morgan lectures widely at venues ranging from popular forums, high schools, and summer schools for students and young faculty to university colloquia and research seminars.
弗兰克·摩根和他的学生将研究密度流形,这是黎曼流形的一种推广,长期以来在概率方面表现突出,对几何及其应用的兴趣迅速增长。密度函数对体积和面积的权重相等,不像公制的保角变化。具有密度的流形是Gromov的mm空间的光滑情况,尽管我们也考虑奇点。宏伟的目标是将黎曼几何的适当部分推广到具有密度的流形。进步应该提高我们对黎曼几何的理解;例如,里奇曲率对有密度的流形有很多不同的推广,而这恰好与黎曼流形相吻合。等周问题提供了一个很好的切入点。高斯空间上的等周定理是密度流形的首要例子,在概率论、黎曼几何的等周问题,特别是佩雷尔曼关于庞加莱猜想的工作中都有应用。方法将包括几何测量理论、黎曼几何和二次变分的标准和创新应用。具有奇点的空间是理论和应用的核心,而等周问题再次提供了一个极好的切入点。我们在一维流形(比如二维曲面或三维宇宙,可能有奇点)上考虑的密度与新生物理中考虑的密度相同,权重随点而变化。这种密度在数学中自然出现;最近的应用包括物理学中的布朗运动,股票期权定价,以及佩雷尔曼关于庞加莱猜想的工作。研究这种自然推广为经典几何提供了新的见解。作为一个重要的例子,对于单位密度的经典几何,自古希腊时代以来一直是几何研究中心的“等周问题”寻求一个给定体积的周长最小的区域;在欧几里得空间中,解是一个圆球。在变密度流形上,等周问题寻求给定加权体积的最小加权周长区域。在更一般的环境下的工作提供了在经典环境下的新结果。摩根的本科生已经解决了一些有趣的案例,并在继续这项工作。摩根广泛地在各种场合演讲,从流行论坛、高中、面向学生和年轻教师的暑期学校到大学座谈会和研究研讨会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Frank Morgan其他文献

The relationship between variation in price and theft rates of consumer and commodity goods over time: a systematic review
  • DOI:
    10.1007/s11292-021-09493-8
  • 发表时间:
    2022-01-08
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Liam Quinn;Joseph Clare;Jade Lindley;Frank Morgan
  • 通讯作者:
    Frank Morgan
Cylindrical surfaces of delaunay
Qualitative and quantitative analysis of monocyte transendothelial migration by confocal microscopy and three-dimensional image reconstruction
  • DOI:
    10.1290/1071-2690(2001)037<0111:qaqaom>2.0.co;2
  • 发表时间:
    2001-01-01
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Anuska V. Andjelkovic;Michal R. Zochowski;Frank Morgan;Joel S. Pachter
  • 通讯作者:
    Joel S. Pachter
Isoperimetric comparison theorems for manifolds with density
Resource Distribution in a Repeat Burglary Intervention

Frank Morgan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Frank Morgan', 18)}}的其他基金

The Williams SMALL REU Site
威廉姆斯小型 REU 站点
  • 批准号:
    0353634
  • 财政年份:
    2004
  • 资助金额:
    $ 14.54万
  • 项目类别:
    Continuing Grant
Minimal Surfaces and Singular Geometry
最小曲面和奇异几何
  • 批准号:
    0203434
  • 财政年份:
    2002
  • 资助金额:
    $ 14.54万
  • 项目类别:
    Standard Grant
Isoperimetric Problems and Singular Geometry
等周问题和奇异几何
  • 批准号:
    9876471
  • 财政年份:
    1999
  • 资助金额:
    $ 14.54万
  • 项目类别:
    Standard Grant
Mathematical Sciences: RUI: Minimal Surfaces, Clusters, and Singular Geometry
数学科学:RUI:最小曲面、簇和奇异几何
  • 批准号:
    9625641
  • 财政年份:
    1996
  • 资助金额:
    $ 14.54万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: RUI: Geometry, Topology, and Number Theory at Williams
数学科学:RUI:威廉姆斯的几何、拓扑和数论
  • 批准号:
    9302843
  • 财政年份:
    1993
  • 资助金额:
    $ 14.54万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: RUI: Geometric Measure Theory and the Topology of 3-Manifolds
数学科学:RUI:几何测度论和3-流形拓扑
  • 批准号:
    9000937
  • 财政年份:
    1990
  • 资助金额:
    $ 14.54万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Small Geometry Project
数学科学:小几何项目
  • 批准号:
    8900348
  • 财政年份:
    1989
  • 资助金额:
    $ 14.54万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: RUI: Geometry
数学科学:RUI:几何
  • 批准号:
    8802266
  • 财政年份:
    1988
  • 资助金额:
    $ 14.54万
  • 项目类别:
    Continuing Grant

相似海外基金

Conference: St. Louis Topology Conference: Flows and Foliations in 3-Manifolds
会议:圣路易斯拓扑会议:3 流形中的流动和叶理
  • 批准号:
    2350309
  • 财政年份:
    2024
  • 资助金额:
    $ 14.54万
  • 项目类别:
    Standard Grant
Geodesic arcs and surfaces for hyperbolic knots and 3-manifolds
双曲结和 3 流形的测地线弧和曲面
  • 批准号:
    DP240102350
  • 财政年份:
    2024
  • 资助金额:
    $ 14.54万
  • 项目类别:
    Discovery Projects
Diffusions and jump processes on groups and manifolds
群和流形上的扩散和跳跃过程
  • 批准号:
    2343868
  • 财政年份:
    2024
  • 资助金额:
    $ 14.54万
  • 项目类别:
    Continuing Grant
CAREER: Nonlinear Finite Element Manifolds for Improved Simulation of Shock-Dominated Turbulent Flows
职业:用于改进冲击主导的湍流模拟的非线性有限元流形
  • 批准号:
    2338843
  • 财政年份:
    2023
  • 资助金额:
    $ 14.54万
  • 项目类别:
    Continuing Grant
Surfaces in 4-manifolds and modified surgery theory
4 流形表面和改进的手术理论
  • 批准号:
    2347230
  • 财政年份:
    2023
  • 资助金额:
    $ 14.54万
  • 项目类别:
    Standard Grant
Non-semisimple quantum invariants of three and four manifolds
三流形和四流形的非半简单量子不变量
  • 批准号:
    2304990
  • 财政年份:
    2023
  • 资助金额:
    $ 14.54万
  • 项目类别:
    Standard Grant
Equivariant index theory of infinite-dimensional manifolds and related topics
无限维流形等变指数理论及相关主题
  • 批准号:
    23K12970
  • 财政年份:
    2023
  • 资助金额:
    $ 14.54万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ergodic Properties of Smooth Systems on Manifolds
流形上光滑系统的遍历性质
  • 批准号:
    2247572
  • 财政年份:
    2023
  • 资助金额:
    $ 14.54万
  • 项目类别:
    Standard Grant
Smooth 4-manifolds, hyperbolic 3-manifolds and diffeomorphism groups
光滑 4 流形、双曲 3 流形和微分同胚群
  • 批准号:
    2304841
  • 财政年份:
    2023
  • 资助金额:
    $ 14.54万
  • 项目类别:
    Continuing Grant
Symplectic cohomology and quantum cohomology of Fano manifolds
Fano流形的辛上同调和量子上同调
  • 批准号:
    2306204
  • 财政年份:
    2023
  • 资助金额:
    $ 14.54万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了