Isoperimetric Problems and Singular Geometry

等周问题和奇异几何

基本信息

  • 批准号:
    9876471
  • 负责人:
  • 金额:
    $ 10.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-08-01 至 2003-07-31
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS-9876471Principal Investigator: Frank MorganThe principal investigator will study various isoperimetricproblems in Euclidean space and more general Riemannianmanifolds. He will work on Aubin's conjecture, that the Euclideanisoperimetric inequality continues to hold in a simply connectedspace of nonpositive curvature, at least for small volumes. Moregeneral isoperimetric problems in Euclidean space involveclusters of several given volumes, crystalline energies dependenton direction, and immiscible fluids, for which interface costdepends on the fluids separated. He will work on the DoubleBubble Conjecture for general volumes and in higher dimensions. Adistinguishing feature of many of these problems is theappearance of singularities.Isoperimetric problems consider the cost of enclosing volume:soap bubbles enclosing volumes of air, crystalline arrangementsof molecules in materials, the interplay between area and volumein the curvature of the universe. Singularities often play acritical role: soap films meeting in threes, structural defectsin materials, black holes in the universe. Fundamental questionsremain open. The Double Bubble Conjecture, for example, says thatthe familiar double soap bubble is the least-area way to encloseand separate two given volumes of air. The recent computer prooffor the case of equal volumes by Hass and Schlafly can be tracedback to work by Morgan's NSF undergraduate research GeometryGroup, which will continue to work on the general problem. Morgangives some forty talks a year. To popular audiences he likes toexplain that the way to understand the geometry of the universeis first to understand the geometry of soap bubbles. He has aMath Chat TV show and column, both available at the MathematicalAssociation of America website at http://www.maa.org, and iscurrently making final preparations for the publication of apopular Math Chat Book.
AbstractAward:DMS-9876471首席研究员:弗兰克摩根首席研究员将研究各种isoperimetricproblems在欧几里德空间和更一般的黎曼流形。他将致力于奥宾的猜想,即欧几里德等周不等式继续举行在一个简单的connectedspace的非正曲率,至少在小体积。更一般的等周问题在欧几里得空间involveclusters几个给定的体积,结晶能量dependenton方向,和不混溶的流体,其中界面成本取决于分离的流体。他将致力于一般体积和更高维度的DoubleBubble猜想。这些问题的一个显著特征是奇点的出现。等周问题考虑了封闭体积的代价:肥皂泡封闭了大量的空气,材料中分子的结晶体,宇宙曲率中面积和体积之间的相互作用。 奇点经常扮演着关键的角色:肥皂膜三重相交,结构缺陷材料,宇宙中的黑洞。基本问题仍然悬而未决。例如,双气泡猜想说,我们熟悉的双肥皂泡是分离和分离两个给定体积空气的最小面积方法。最近哈斯和施拉夫利对等体积情况的计算机证明可以追溯到摩根的NSF本科研究几何组的工作,该小组将继续研究一般问题。莫甘吉夫一年约有四十次演讲。他喜欢向大众解释,要理解宇宙的几何形状,首先要理解肥皂泡的几何形状。他有一个数学聊天电视节目和专栏,都可以在美国数学协会网站http://www.maa.org上找到,目前正在为出版一本流行的数学聊天书做最后的准备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Frank Morgan其他文献

Cylindrical surfaces of delaunay
The relationship between variation in price and theft rates of consumer and commodity goods over time: a systematic review
  • DOI:
    10.1007/s11292-021-09493-8
  • 发表时间:
    2022-01-08
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Liam Quinn;Joseph Clare;Jade Lindley;Frank Morgan
  • 通讯作者:
    Frank Morgan
Qualitative and quantitative analysis of monocyte transendothelial migration by confocal microscopy and three-dimensional image reconstruction
  • DOI:
    10.1290/1071-2690(2001)037<0111:qaqaom>2.0.co;2
  • 发表时间:
    2001-01-01
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Anuska V. Andjelkovic;Michal R. Zochowski;Frank Morgan;Joel S. Pachter
  • 通讯作者:
    Joel S. Pachter
Isoperimetric comparison theorems for manifolds with density
Resource Distribution in a Repeat Burglary Intervention

Frank Morgan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Frank Morgan', 18)}}的其他基金

RUI: Manifolds with Density and Isoperimetric Problems
RUI:具有密度和等周问题的流形
  • 批准号:
    0803168
  • 财政年份:
    2008
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Standard Grant
The Williams SMALL REU Site
威廉姆斯小型 REU 站点
  • 批准号:
    0353634
  • 财政年份:
    2004
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Continuing Grant
Minimal Surfaces and Singular Geometry
最小曲面和奇异几何
  • 批准号:
    0203434
  • 财政年份:
    2002
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Standard Grant
Mathematical Sciences: RUI: Minimal Surfaces, Clusters, and Singular Geometry
数学科学:RUI:最小曲面、簇和奇异几何
  • 批准号:
    9625641
  • 财政年份:
    1996
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: RUI: Geometry, Topology, and Number Theory at Williams
数学科学:RUI:威廉姆斯的几何、拓扑和数论
  • 批准号:
    9302843
  • 财政年份:
    1993
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: RUI: Geometric Measure Theory and the Topology of 3-Manifolds
数学科学:RUI:几何测度论和3-流形拓扑
  • 批准号:
    9000937
  • 财政年份:
    1990
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Small Geometry Project
数学科学:小几何项目
  • 批准号:
    8900348
  • 财政年份:
    1989
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: RUI: Geometry
数学科学:RUI:几何
  • 批准号:
    8802266
  • 财政年份:
    1988
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Continuing Grant

相似海外基金

Asymptotic patterns and singular limits in nonlinear evolution problems
非线性演化问题中的渐近模式和奇异极限
  • 批准号:
    EP/Z000394/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Research Grant
RUI: Multiscale Methods, Singular Limits, and Spectral Problems Related to Materials Science
RUI:与材料科学相关的多尺度方法、奇异极限和谱问题
  • 批准号:
    2110036
  • 财政年份:
    2021
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Standard Grant
Improved Numerical Methods for Solving Optimal Control Problems with Nonsmooth and Singular Solutions
解决具有非光滑和奇异解的最优控制问题的改进数值方法
  • 批准号:
    2031213
  • 财政年份:
    2021
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Standard Grant
Probabilistic Approach to Singular Free Boundary Problems and Applications
奇异自由边界问题的概率方法及其应用
  • 批准号:
    2108680
  • 财政年份:
    2021
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Continuing Grant
CAREER: Fine Structure of the Singular Set in Some Geometric Variational Problems
职业:一些几何变分问题中奇异集的精细结构
  • 批准号:
    2044954
  • 财政年份:
    2021
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Continuing Grant
Mathematical analysis of pattern dynamics of reaction-diffusion systems and their singular limit problems
反应扩散系统模式动力学及其奇异极限问题的数学分析
  • 批准号:
    20H01816
  • 财政年份:
    2020
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Variational problems and geometric analysis for hypersurfaces with singular points, and novel development of discrete surface theory
奇点超曲面的变分问题和几何分析以及离散曲面理论的新发展
  • 批准号:
    20H01801
  • 财政年份:
    2020
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Surface evolution equations with singular structure and boundary value problems
具有奇异结构和边值问题的表面演化方程
  • 批准号:
    19K14564
  • 财政年份:
    2019
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Mathematical analysis of anisotropy and singular limit problems in the equations of geophysical fluid dynamics
地球物理流体动力学方程各向异性和奇异极限问题的数学分析
  • 批准号:
    19K03584
  • 财政年份:
    2019
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Approximate Singular Value Expansions and Solutions of Ill-Posed Problems
近似奇异值展开及不适定问题的解
  • 批准号:
    1913136
  • 财政年份:
    2019
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了