RI-Medium: Collaborative Research: Learning Multiscale Representations Using Harmonic Analysis on Graphs

RI-Medium:协作研究:使用图的调和分析学习多尺度表示

基本信息

  • 批准号:
    0803293
  • 负责人:
  • 金额:
    $ 27.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

Last Modified Date: 07/11/08 Last Modified By: Douglas H. Fisher Abstract This project exercises and expands upon methods for automatic discovery of new representations at multiple temporal and spatial scales. The specific framework generalizes classical harmonic analysis, in particular wavelet-based methods, to graphs and manifolds, thereby greatly extending the scope and the desirable characteristics of this multiscale-analysis framework to domains with arbitrary geometries. This framework, termed diffusion wavelets because it is associated with a diffusion process that defines the different scales, has unique properties relevant to learning, function approximation, compression and denoising. The set of core problems that this project addresses include fast algorithms for construction of multiscale diffusion wavelets, approximation of functions on very large graphs and high-dimensional manifolds, out-of-sample extensions of functions on manifolds and graphs, compression and denoising of functions on data sets, perturbation analysis, and randomized algorithms for multiscale analysis. Challenging application domains are being investigated, including analysis of document corpora, Markov decision processes, and 3D image rendering. In each case, multiscale diffusion analysis yields interpretable and meaningful results. For example, when applied to Markov decision processes, diffusion wavelet analysis yields new optimization methods that dynamically aggregate states and actions at multiple levels of abstraction; and when applied to 3D computer graphics, it yields new compression methods that capture geometric features of objects at multiple resolutions.
最后修改日期:07/11/08最后修改人:道格拉斯H. Fisher 这个项目练习并扩展了在多个时间和空间尺度上自动发现新表示的方法。具体的框架概括了经典的谐波分析,特别是基于小波的方法,图形和流形,从而大大扩展了范围和理想的特性,这个多尺度分析框架域与任意几何形状。这个框架被称为扩散小波,因为它与定义不同尺度的扩散过程相关联,具有与学习,函数逼近,压缩和去噪相关的独特属性。该项目解决的核心问题包括多尺度扩散小波构造的快速算法,非常大的图和高维流形上函数的近似,流形和图上函数的样本外扩展,数据集上函数的压缩和去噪,扰动分析和多尺度分析的随机算法。正在研究的应用领域包括文档语料库分析、马尔可夫决策过程和3D图像渲染。在每种情况下,多尺度扩散分析产生可解释的和有意义的结果。例如,当应用于马尔可夫决策过程时,扩散小波分析产生了新的优化方法,可以在多个抽象层次上动态聚合状态和动作;当应用于3D计算机图形时,它产生了新的压缩方法,可以在多个分辨率下捕获对象的几何特征。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mauro Maggioni其他文献

A scalable framework for learning the geometry-dependent solution operators of partial differential equations
用于学习偏微分方程的几何依赖解算符的可扩展框架
  • DOI:
    10.1038/s43588-024-00732-2
  • 发表时间:
    2024-12-09
  • 期刊:
  • 影响因子:
    18.300
  • 作者:
    Minglang Yin;Nicolas Charon;Ryan Brody;Lu Lu;Natalia Trayanova;Mauro Maggioni
  • 通讯作者:
    Mauro Maggioni
Critical Exponent of Short Even Filters andBurt-Adelson Biorthogonal Wavelets
  • DOI:
    10.1007/s006050070024
  • 发表时间:
    2000-11-15
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Mauro Maggioni
  • 通讯作者:
    Mauro Maggioni
DH-482888-001 PREDICTING PERSONALIZED CARDIAC ELECTROPHYSIOLOGY USING DEEP LEARNING
DH-482888-001 使用深度学习预测个性化心脏电生理学
  • DOI:
    10.1016/j.hrthm.2024.03.261
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Minglang Yin;Nicolas Charon;Ryan Brody;Lu Lu;Mauro Maggioni;Natalia A. Trayanova
  • 通讯作者:
    Natalia A. Trayanova
PO-01-212 strongA NOVEL DEEP LEARNING MODEL FOR PATIENT-SPECIFIC COMPUTATIONAL MODELING OF CARDIAC ELECTROPHYSIOLOGY/strong
PO-01-212 一种用于患者特异性心脏电生理计算建模的强大新型深度学习模型
  • DOI:
    10.1016/j.hrthm.2023.03.530
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Minglang Yin;Lu Lu;Mauro Maggioni;Natalia A. Trayanova
  • 通讯作者:
    Natalia A. Trayanova

Mauro Maggioni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mauro Maggioni', 18)}}的其他基金

BIGDATA: F: Compositional Learning, Maps and Transfer: Statistical and Machine Learning on Collections of Data Sets
BIGDATA:F:组合学习、地图和迁移:数据集集合的统计和机器学习
  • 批准号:
    1837991
  • 财政年份:
    2019
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Standard Grant
ATD: Estimation and Anomaly Detection for high-dimensional Data, Maps and Dynamic Processes
ATD:高维数据、地图和动态过程的估计和异常检测
  • 批准号:
    1737984
  • 财政年份:
    2017
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Standard Grant
ATD: Online Multiscale Algorithms for Geometric Density Estimation in High-Dimensions and Persistent Homology of Data for Improved Threat Detection
ATD:用于高维几何密度估计和数据持久同源性的在线多尺度算法,以改进威胁检测
  • 批准号:
    1756892
  • 财政年份:
    2016
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Standard Grant
Collaborative Proposal: SI2-CHE: ExTASY Extensible Tools for Advanced Sampling and analYsis
合作提案:SI2-CHE:用于高级采样和分析的 ExTASY 可扩展工具
  • 批准号:
    1708353
  • 财政年份:
    2016
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: From Data Geometries to Information Networks
BIGDATA:协作研究:F:从数据几何到信息网络
  • 批准号:
    1708553
  • 财政年份:
    2016
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Standard Grant
Statistical Learning for High-Dimensional Stochastic Dynamical Systems
高维随机动力系统的统计学习
  • 批准号:
    1708602
  • 财政年份:
    2016
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Continuing Grant
Structured Dictionary Models and Learning for High Resolution Images
高分辨率图像的结构化字典模型和学习
  • 批准号:
    1724979
  • 财政年份:
    2016
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: From Data Geometries to Information Networks
BIGDATA:协作研究:F:从数据几何到信息网络
  • 批准号:
    1546392
  • 财政年份:
    2016
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Standard Grant
Statistical Learning for High-Dimensional Stochastic Dynamical Systems
高维随机动力系统的统计学习
  • 批准号:
    1522651
  • 财政年份:
    2015
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Continuing Grant
Structured Dictionary Models and Learning for High Resolution Images
高分辨率图像的结构化字典模型和学习
  • 批准号:
    1320655
  • 财政年份:
    2013
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312373
  • 财政年份:
    2023
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313149
  • 财政年份:
    2023
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
  • 批准号:
    2312955
  • 财政年份:
    2023
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
  • 批准号:
    2313137
  • 财政年份:
    2023
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313150
  • 财政年份:
    2023
  • 资助金额:
    $ 27.98万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了